Dye sensitizers with wideband absorption covering the near-IR region have long been of interest because they potentially harvest a wide range of solar energies essential to promote photocurrent power conversion efficiencies. In this study, we used time-dependent density functional theory with spin-orbit (SO) interactions to theoretically explore the long-wavelength absorptions and spin-forbidden triplet transitions activated by SO interactions for terpyridyl ruthenium/osmium complex dyes. These dyes feature a Ru(II) sensitizer coordinated with a phosphine ligand and are exemplified by DX1, denoted as [-dichloro-(phenyldimethoxyphosphine)(2,2';6',2″-terpyridyl-4,4',4″-tricarboxylic)Ru]. We found that ancillary ligands significantly affected the longest wavelength spin-allowed absorption, with NCS ligands yielding longer wavelength S transitions than halides. High atomic number halide ligands caused blue shifts in the S transition. Os complexes consistently exhibited longer wavelength S transitions than Ru complexes with identical ligands. In Ru/Os complexes, ancillary ligands with higher atomic numbers have a more pronounced effect in activating spin-forbidden triplet transitions through spin-orbit coupling (SOC) than those with lower atomic numbers. The absorption wavelength of the SOC-activated transition primarily depended on the energy of lower lying triplet states. Some complexes exhibited T states activated by SOC, leading to longer wavelength absorption than that of SOC-activated T states. Our study revealed the significance of ancillary ligands and SOC interactions in Ru/Os complexes, offering insights for optimizing materials with enhanced long-wavelength absorption properties, particularly in the near-IR range, for photovoltaic and optoelectronic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860138PMC
http://dx.doi.org/10.1021/acs.jpca.3c07554DOI Listing

Publication Analysis

Top Keywords

ancillary ligands
16
ru/os complexes
12
longer wavelength
12
complexes ancillary
8
spin-forbidden triplet
8
triplet transitions
8
wavelength transitions
8
atomic numbers
8
ligands
7
absorption
6

Similar Publications

The engineering of charge transport materials, with electronic characteristics that result in effective charge extraction and transport dynamics, is pivotal for the realization of efficient perovskite solar cells (PSCs). Herein, we elucidate the critical role of terminal substituent methoxy groups (-OCH) on the bandgap tuning of the spiro-like hole transport materials (HTMs) to realize performant and cost-effective PSCs. By considering spiro-OMeTAD as the benchmark HTM, we kept the backbone of spiro while replacing diphenylamine with phenanthrenimidazole.

View Article and Find Full Text PDF

We report the synthesis and characterization of two chiral binuclear iridium(III) complexes ( and ) prepared from enantiopure building blocks [μ-Cl(Δ-Ir(C^N))] and [μ-Cl(Λ-Ir(C^N))]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer () and a dimer (, mixture).

View Article and Find Full Text PDF

Copper-Mediated -CF(OCF)(CFH) Transfer to Organic Electrophiles.

ACS Org Inorg Au

December 2024

Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada.

The integration of fluorine into medicinal compounds has become a widely used strategy to improve the biochemical and therapeutic properties of drugs. Inclusion of -CFH and -OCF fluoroalkyl groups has garnered attention due to their bioisosteric properties, enhanced lipophilicity, and potential hydrogen-bonding capability in bioactive substances. In this study, we prepared a series of stable Cu[CF(OCF)(CFH)]L complexes by insertion of commercially available perfluoro(methyl vinyl ether), CF=CF(OCF), into Cu-H bonds derived from Stryker's reagent, [CuH(PPh)], using ancillary ligands L.

View Article and Find Full Text PDF

Theoretical Insight into the Multiple Roles of the Silyl-Phenanthroline Ligand in Ir-Catalyzed C(sp)-H Borylation.

J Org Chem

December 2024

State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.

Silyl-phenanthroline (NN'Si) ligand ancillary iridium-catalyzed C(sp)-H borylation is investigated theoretically. Density functional theory calculations clearly disclose that the (NN'Si)Ir(H)(Bpin) (NN'Si = 6-[(di--butylsilyl)methyl]-1,10-phenanthroline) complex is a resting state, and the (NN'Si)Ir(Bpin) complex serves as an active species in the catalytic cycle. The remarkably high activity of this type of a catalyst arises from the rapid reductive elimination of HBpin from (NN'Si)Ir(H)(Bpin) to generate the active species (NN'Si)Ir(Bpin).

View Article and Find Full Text PDF

Some half-sandwich compounds with a variety of ligands and metal centres have shown promising anticancer activity. Herein we report a series of reactions between the sulfonylthiourea ligands -TolSONHC(S)NHPh, EtSONHC(S)NHPh and CHSONHC(S)NHPh and [(η--cymene)RuCl], [(η-arene)RuCl(PR)] (arene = benzene or -cymene), [Cp*MCl(PR)] or [Cp*RhCl] (M = Ir(III), Rh(III)), Cp* = η-pentamethylcyclopentadienyl, PR = triphenylphosphine (PPh), tris(2-cyanoethyl)phosphine (tcep) and 1,3,5-triaza-7-phosphaadamantane (pta) and their corresponding piano stool complexes. Single crystal X-ray diffraction structure determinations indicated that the resulting linkage isomer of the complex, , (coordination S,N placing the sulfonyl group near the coordination sphere) or (coordination S,N, placing the sulfonyl group away from the coordination sphere), is directly related to the steric bulk around the metal centre.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!