A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The amelioration of salt stress-induced damage in fenugreek through the application of cold plasma and melatonin. | LitMetric

The amelioration of salt stress-induced damage in fenugreek through the application of cold plasma and melatonin.

Plant Physiol Biochem

Department of Horticulture Science and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.

Published: February 2024

Nowadays, it is increasingly crucial to combine innovative approaches with established methods to enhance plant tolerance and maximize the production of beneficial compounds. With this aim in view, a study was carried out to investigate how different melatonin concentrations (0, 30, and 60 ppm), cold plasma treatment (at 3000 and 4000 V), and varying exposure durations (0, 1, 2, and 4 min) affect the physiological and biochemical attributes of fenugreek plants, as well as the levels of diosgenin under salinity stress. This study revealed that the application of 3000 V cold plasma for 2 min with 60 ppm melatonin by establishing cellular redox homeostasis in salinity-treated fenugreek plants, effectively prevented the destruction of pigments and reduced the electrolyte leakage index of malondialdehyde content. The utilization of these two elicitors has the potential to trigger multiple pathways, including the enzymatic and non-enzymatic antioxidants biosynthesis, and abscisic acid-dependent pathways. This activation results in an enhanced production of abscisic acid, auxin, and endogenous melatonin, along with the regulation of signal transduction pathways. Surprisingly, applying these two treatments increased the expression of SQS, CAS, SSR, BGL, SEP, SMT, and diosgenin content by 13, 22.5, 21.6, 19, 15.4, 12, and 6 times respectively. The findings highlight the intricate interplay between these treatments and the positive impact of their combined application, opening up avenues for further research and practical applications in improving plant tolerance to environmental stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108382DOI Listing

Publication Analysis

Top Keywords

cold plasma
12
plant tolerance
8
fenugreek plants
8
amelioration salt
4
salt stress-induced
4
stress-induced damage
4
damage fenugreek
4
fenugreek application
4
application cold
4
melatonin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!