A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MV-MS-FETE: Multi-view multi-scale feature extractor and transformer encoder for stenosis recognition in echocardiograms. | LitMetric

Background: aortic stenosis is a common heart valve disease that mainly affects older people in developed countries. Its early detection is crucial to prevent the irreversible disease progression and, eventually, death. A typical screening technique to detect stenosis uses echocardiograms; however, variations introduced by other tissues, camera movements, and uneven lighting can hamper the visual inspection, leading to misdiagnosis. To address these issues, effective solutions involve employing deep learning algorithms to assist clinicians in detecting and classifying stenosis by developing models that can predict this pathology from single heart views. Although promising, the visual information conveyed by a single image may not be sufficient for an accurate diagnosis, especially when using an automatic system; thus, this indicates that different solutions should be explored.

Methodology: following this rationale, this paper proposes a novel deep learning architecture, composed of a multi-view, multi-scale feature extractor, and a transformer encoder (MV-MS-FETE) to predict stenosis from parasternal long and short-axis views. In particular, starting from the latter, the designed model extracts relevant features at multiple scales along its feature extractor component and takes advantage of a transformer encoder to perform the final classification.

Results: experiments were performed on the recently released Tufts medical echocardiogram public dataset, which comprises 27,788 images split into training, validation, and test sets. Due to the recent release of this collection, tests were also conducted on several state-of-the-art models to create multi-view and single-view benchmarks. For all models, standard classification metrics were computed (e.g., precision, F1-score). The obtained results show that the proposed approach outperforms other multi-view methods in terms of accuracy and F1-score and has more stable performance throughout the training procedure. Furthermore, the experiments also highlight that multi-view methods generally perform better than their single-view counterparts.

Conclusion: this paper introduces a novel multi-view and multi-scale model for aortic stenosis recognition, as well as three benchmarks to evaluate it, effectively providing multi-view and single-view comparisons that fully highlight the model's effectiveness in aiding clinicians in performing diagnoses while also producing several baselines for the aortic stenosis recognition task.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2024.108037DOI Listing

Publication Analysis

Top Keywords

multi-view multi-scale
12
feature extractor
12
transformer encoder
12
stenosis recognition
12
aortic stenosis
12
multi-scale feature
8
extractor transformer
8
deep learning
8
multi-view single-view
8
multi-view methods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!