Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To develop a novel stabilizing agent for silver nanoparticles (AgNPs) with the aim of enhancing its antibacterial efficacy against wound associated pathogens while mitigating their cytotoxic effect on human cells. In this study, monodispersed gelatin nanoparticles were synthesized to stabilize AgNPs. The stability, antibacterial activity and biocompatibility of the gelatin-stabilized AgNPs (Gel-AgNPs) were compared with citrate-stabilized AgNPs (citrate-AgNPs) or silver ions. Gelatin-stabilized AgNPs showed significantly better antibacterial activities compared with citrate-stabilized AgNPs against both Gram-positive and Gram-negative bacteria. These Gel-AgNPs showed significantly lower cytotoxicity to human dermal fibroblasts compared with Ag. These findings provided the first evidence substantiating a novel functionality of gelatin nanoparticles in both stabilizing and enhancing the activity of AgNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm-2023-0246 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!