A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification and biological evaluation of ZnFeO nanoparticle stiffness in a drug delivery system of MCF-7 cancer cells. | LitMetric

Quantification and biological evaluation of ZnFeO nanoparticle stiffness in a drug delivery system of MCF-7 cancer cells.

J Mater Chem B

Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Published: February 2024

The delivery of nanoparticles (NPs) to tumors remains challenging despite significant advancements in drug delivery technologies. Addressing this issue requires the establishment of quantitative and reliable criteria to evaluate the cellular absorption of NPs. The mechanical characteristics of NPs and their interaction with cells play a crucial role in cellular drug delivery by influencing cellular internalization. In particular, NPs' stiffness has emerged as a key factor affecting cellular uptake and viability. In this study, we synthesized ZnFeO NPs with varying Zn doping concentrations and conducted an extensive measurement process to investigate the impact of NP stiffness on cellular uptake and the viability of cancerous cells. Initially, the stiffness of the NPs was measured using two methods: single-molecule force spectrometry of atomic force microscopy (SMFS-AFM) and cation distribution as chemical structure analysis. The influence of NP stiffness on intracellular behavior was examined by assessing cellular uptake and viability at different time points during the incubation period. The results obtained from both stiffness measurement methods exhibited consistent trends. NPs with higher stiffness exhibited enhanced cellular uptake but exhibited reduced cellular viability compared to the lower-stiffness NPs. Our findings provide valuable insights into the influence of Zn doping concentration on the mechanical properties of ZnFeO NPs and their consequential impacts on cellular internalization. This study contributes to an improved comprehension of the mechanisms underlying cellular uptake and facilitates advancements in the field of drug transport, thereby enhancing the efficiency of NP-based drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb02723fDOI Listing

Publication Analysis

Top Keywords

cellular uptake
20
drug delivery
16
uptake viability
12
cellular
10
nps
8
cellular internalization
8
znfeo nps
8
stiffness
7
drug
5
delivery
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!