Background: Previous studies have reported SIRT1 was inversely modulated by miR-34a, However, mechanism of metformin (MFN)'s renal podocyte protection under high glucose (HG) conditions and the connection between miR-34a and SIRT1 expression in diabetic nephropathy (DN) remain unclear.

Method: We aimed to further elucidate the role of miR-34a in HG-treated podocytes in DN. A conditionally immortalized human podocyte cell line was cultivated in d-glucose (30 mM).

Results: Microarray and RT-qPCR revealed that miR-34a was downregulated in HG-treated podocytes. Additionally, miR-34a levels increased in MFN-treated HG-induced podocytes. CCK-8 assay, colony formation assay, flow cytometry, and Western blot detection showed that HG treatment reduced cell viability and promoted via HG treatment, and MFN treatment reversed this phenotypic change. MiR-34a upregulation caused restored cell viability and suppressed cell apoptosis in HG-treated podocytes, and miR-34a downregulation led to damaged cell survival and induced apoptosis in MFN-administered and HG-treated podocytes. The dual luciferase reporter assay showed that SIRT1 3'-UTR was a direct miR-34a target. Further studies demonstrated an elevation in SIRT1 levels in HG-exposed podocytes, whereas MFN treatment decreased SIRT1 levels. In addition, miR-34a upregulation led to reduced SIRT1 expression, whereas miR-34a inhibition increased SIRT1 levels in cells. MFN-induced miR-34a suppresses podocyte apoptosis under HG conditions by acting on SIRT1.

Conclusion: This study proposes a promising approach to interpret the mechanisms of action of the MFN-miR-34a axis involved in DN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797654PMC
http://dx.doi.org/10.1002/iid3.1053DOI Listing

Publication Analysis

Top Keywords

hg-treated podocytes
12
sirt1 levels
12
mir-34a
11
sirt1 expression
8
cell viability
8
mfn treatment
8
mir-34a upregulation
8
sirt1
7
podocytes
5
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!