Capillary filling dynamics of polymer melts in a bicontinuous nanoporous scaffold.

J Chem Phys

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: January 2024

Polymer infiltrated nanoporous gold is prepared by infiltrating polymer melts into a bicontinuous, nanoporous gold (NPG) scaffold. Polystyrene (PS) films with molecular weights (Mw) from 424 to 1133 kDa are infiltrated into a NPG scaffold (∼120 nm), with a pore radius (Rp) and pore volume fraction of 37.5 nm and 50%, respectively. The confinement ratios (Γ=RgRp) range from 0.47 to 0.77, suggesting that the polymers inside the pores are moderately confined. The time for PS to achieve 80% infiltration (τ80%) is determined using in situ spectroscopic ellipsometry at 150 °C. The kinetics of infiltration scales weaker with Mw, τ80%∝Mw1.30±0.20, than expected from bulk viscosity Mw3.4. Furthermore, the effective viscosity of the PS melt inside NPG, inferred from the Lucas-Washburn model, is reduced by more than one order of magnitude compared to the bulk. Molecular dynamics simulation results are in good agreement with experiments predicting scaling as Mw1.4. The reduced dependence of Mw and the enhanced kinetics of infiltration are attributed to a reduction in chain entanglement density during infiltration and a reduction in polymer-wall friction with increasing polymer molecular weight. Compared to the traditional approach involving adding discrete particles into the polymer matrix, these studies show that nanocomposites with higher loading can be readily prepared, and that kinetics of infiltration are faster due to polymer confinement inside pores. These films have potential as actuators when filled with stimuli-responsive polymers as well as polymer electrolyte and fuel cell membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0184427DOI Listing

Publication Analysis

Top Keywords

kinetics infiltration
12
polymer melts
8
melts bicontinuous
8
bicontinuous nanoporous
8
nanoporous gold
8
npg scaffold
8
inside pores
8
polymer
7
infiltration
5
capillary filling
4

Similar Publications

Engineering LiBH-Based Materials for Advanced Hydrogen Storage: A Critical Review of Catalysis, Nanoconfinement, and Composite Design.

Molecules

December 2024

College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China.

Lithium borohydride (LiBH) has emerged as a promising hydrogen storage material due to its exceptional theoretical hydrogen capacity (18.5 wt.%).

View Article and Find Full Text PDF

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder that possesses metabolic dysfunction and shows steatohepatitis. Although the number of patients is globally increasing and many clinical studies have developed medicine for MASLD, most of the studies have failed due to low efficacy. One reason for this failure is the lack of appropriate animal disease models that reflect human MASLD to evaluate the potency of candidate drugs.

View Article and Find Full Text PDF

Using a solid electrolyte is considered to be the most effective strategy to solve the shuttle effect in lithium-sulfur batteries. However, the practical application of solid-state lithium-sulfur batteries (SLSBs) is still far from being realized. This is because SLSBs, like all other solid-state battery systems, also face the dilemma of interface degradation (including both the anode and cathode interfaces), in addition to terrible kinetics due to the nonliquid solid-state electrolytes infiltrating the nonconductive sulfur particles inside the cathode.

View Article and Find Full Text PDF

A General Sol-Gel Route to Fabricate Large-Area Highly-Ordered Metal Oxide Arrays Toward High-Performance Zinc-Air Batteries.

Small

December 2024

Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.

A universal method is demonstrated for the fabrication of large-area highly ordered microporous arrayed metal oxides based on a high-quality self-assembly opal template combined with a sucrose-assisted sol-gel technique. Sucrose as a chelating agent optimizes precursor infiltration and regulates both oxide formation and the melting process of polystyrene templates, thus preventing crack formation during infiltration and calcination. As a result, over 20 metal element-based 3DOM oxides with arbitrary compositions are successfully prepared.

View Article and Find Full Text PDF

Vapor phase infiltration (VPI) enables the fabrication of novel organic-inorganic hybrid materials with distinctive properties by infiltrating polymers with inorganic species through a top-down approach. However, understanding the process kinetics is challenging due to the complex interplay of sorption, diffusion and reaction processes. This study examines how polymer network flexibility affects the kinetics of diethylzinc (DEZ) infiltration into a highly crosslinked polyacrylate copolymer system composed of two monomers: trimethylolpropane triacrylate (TMPTA) and ethoxylated trimethylolpropane triacrylate (ETPTA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!