Unsolved problem of long-range interactions: dipolar spin-ice study.

J Phys Condens Matter

Kansai Institute for Photon Science and Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.

Published: January 2024

Long-range interactions derive various strange phenomena. As illustrated by cutoff simulations of water, increasing cutoff length does not improve the simulation result necessarily; on the contrary, it makes the result worse. In the extreme situation, the structure of water transforms into a layer structure. In this study, to explore the underlying mechanism of this phenomenon, we performed Monte Carlo simulations on dipolar spins arranged on a pyrochlore spin-ice lattice. Like the water case, the present dipolar spin system also showed cutoff-induced dipole ordering and layer formation. The width of the layers depended on the cutoff length; and longer cutoff length led to a broader layer. These features are certainly consistent with the previous water case. This indicates that layer formation is the general behavior of dipolar systems whose interactions are truncated within a finite distance. The result is important for future exploration of the relationship between long-range interactions and resulting structures. In addition, it emphasizes the necessity of rigorous treatment of long-range interactions because increasing the cutoff length prevents convergence and provides an entirely different result from the rigorous Ewald calculation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ad1ca6DOI Listing

Publication Analysis

Top Keywords

long-range interactions
16
cutoff length
16
increasing cutoff
8
water case
8
layer formation
8
interactions
5
cutoff
5
unsolved problem
4
long-range
4
problem long-range
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!