Transfer Hydrogenation of N- and O-Containing Heterocycles Including Pyridines with HN-BH Under the Catalysis of the Homogeneous Ruthenium Precatalyst.

Org Lett

Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India.

Published: February 2024

In this study, we report a transfer hydrogenation protocol that utilizes borane-ammonia (HN-BH) as the hydrogen source and a commercially available RuCl·HO precatalyst for the selective aromatic reduction of quinolines, quinoxalines, pyridines, pyrazines, indoles, benzofurans, and furan derivatives to form the corresponding alicyclic heterocycles in good to excellent isolated yields. Applications of this straightforward protocol include the efficient preparation of useful key pharmaceutical intermediates, such as donepezil and flumequine, including a biologically active compound.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.3c04051DOI Listing

Publication Analysis

Top Keywords

transfer hydrogenation
8
hydrogenation o-containing
4
o-containing heterocycles
4
heterocycles including
4
including pyridines
4
pyridines hn-bh
4
hn-bh catalysis
4
catalysis homogeneous
4
homogeneous ruthenium
4
ruthenium precatalyst
4

Similar Publications

Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.

View Article and Find Full Text PDF

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Characterisation and anaerobic digestion of fat, oil and grease (FOG) waste from wastewater treatment plants.

J Environ Manage

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131, Padova, Italy.

The materials removed in the oil separation units of wastewater treatment plants can be referred to as fat, oil and grease (FOG) waste. FOG waste accumulation in treatment plants can cause clogging of pipes, production of excessive scums and foams, and negatively affect air/liquid oxygen transfer. While conventional disposal routes of this material can be limited by its water and organic content, FOG can represent a source of bio-energy other than bio-diesel production.

View Article and Find Full Text PDF

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!