The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cell carcinomas, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in MCF10A mammary epithelial cells as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for p63 repression. This suggests that regulation of p63 expression occurs by a noncanonical version of the Hippo pathway. We identified similarly regulated genes, suggesting the broader importance of this pathway. Interestingly, lowering p63 expression lead to increased YAP protein levels, indicating crosstalk of the YAP/TAZ-independent and -dependent branches of the Hippo pathway. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829837PMC
http://dx.doi.org/10.1080/10985549.2023.2292037DOI Listing

Publication Analysis

Top Keywords

hippo pathway
20
p63 expression
12
expression Δnp63
8
cancer cells
8
protein kinases
8
kinases mst1/2
8
required p63
8
pathway
7
expression
6
p63
6

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway.

View Article and Find Full Text PDF

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications.

Biomed Pharmacother

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Loss of pancreatic islet cell mass and function is one of the most important factors in the development of type 2 diabetes mellitus, and hyperglycemia-induced lesions in other organs are also associated with apoptosis or hyperproliferation of the corresponding tissue cells. The Hippo signaling pathway is a key signal in the regulation of cell growth, proliferation and apoptosis, which has been shown to play an important role in the regulation of diabetes mellitus and its complications. Excessive activation of the Hippo signaling pathway under high glucose conditions triggered apoptosis and decreased insulin secretion in pancreatic islet cells, while dysregulation of the Hippo signaling pathway in the cells of other organ tissues led to proliferation or apoptosis and promoted tissue fibrosis, which aggravated the progression of diabetes mellitus and its complications.

View Article and Find Full Text PDF

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!