Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clinical prediction models are increasingly used across healthcare to support clinical decision making. Existing methods and models are time-invariant and thus ignore the changes in populations and healthcare practice that occur over time. We aimed to compare the performance of time-invariant with time-variant models in UK National Adult Cardiac Surgery Audit data from Manchester University NHS Foundation Trust between 2009 and 2019. Data from 2009-2011 were used for initial model fitting, and data from 2012-2019 for validation and updating. We fitted four models to the data: a time-invariant logistic regression model (not updated), a logistic model which was updated every year and validated it in each subsequent year, a logistic regression model where the intercept is a function of calendar time (not updated), and a continually updating Bayesian logistic model which was updated with each new observation and continuously validated. We report predictive performance over the complete validation cohort and for each year in the validation data. Over the complete validation data, the Bayesian model had the best predictive performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI231120 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!