A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting In-Hospital Death from Derived EHR Trajectory Features. | LitMetric

AI Article Synopsis

  • Medical histories can help predict a patient's short-term outcomes, especially regarding survival during hospital care.
  • The study used advanced data processing techniques on historical medical records to create a dataset for predicting patient death during episodes of care for bloodstream infections.
  • The extreme gradient boosting model performed the best, achieving 92% accuracy, with age, medical history length, and recent episode information being the key factors influencing predictions.

Article Abstract

Medical histories of patients can predict a patient's immediate future. While most studies propose to predict survival from vital signs and hospital tests within one episode of care, we carried out selective feature engineering from longitudinal medical records in this study to develop a dataset with derived features. We thereafter trained multiple machine learning models for the binary prediction of whether an episode of care will culminate in death among patients suspected of bloodstream infections. The machine learning classifier performance is evaluated and compared and the feature importance impacting the model output is explored. The extreme gradient boosting model achieved the best performance for predicting death in the next hospital episode with an accuracy of 92%. Age at the time of the first visit, length of history, and information related to recent episodes were the most critical features.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI230969DOI Listing

Publication Analysis

Top Keywords

episode care
8
machine learning
8
predicting in-hospital
4
in-hospital death
4
death derived
4
derived ehr
4
ehr trajectory
4
trajectory features
4
features medical
4
medical histories
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!