Accurate identification of the QRS complex is critical to analyse heart rate variability (HRV), which is linked to various adverse outcomes in premature infants. Reliable and accurate extraction of HRV characteristics at a large scale in the neonatal context remains a challenge. In this paper, we investigate the capabilities of 15 state-of-the-art QRS complex detection implementations using two real-world preterm neonatal datasets. As an attempt to improve the accuracy and reliability, we introduce a weighted ensemble-based method as an alternative. Obtained results indicate the superiority of the proposed method over the state of the art on both datasets with an F1-score of 0.966 (95% CI 0.962-0.97) and 0.893 (95% CI 0.892-0.894). This motivates the deployment of ensemble-based methods for any HRV-based analysis to ensure robust and accurate QRS complex detection.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI230960DOI Listing

Publication Analysis

Top Keywords

qrs complex
12
premature infants
8
complex detection
8
accurate
4
accurate search
4
search neonatal
4
neonatal heartbeat
4
heartbeat weighted
4
weighted algorithm
4
algorithm reliable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!