Introduction: Phenotyping algorithms enable the interpretation of complex health data and definition of clinically relevant phenotypes; they have become crucial in biomedical research. However, the lack of standardization and transparency inhibits the cross-comparison of findings among different studies, limits large scale meta-analyses, confuses the research community, and prevents the reuse of algorithms, which results in duplication of efforts and the waste of valuable resources.
Recommendations: Here, we propose five independent fundamental dimensions of phenotyping algorithms-complexity, performance, efficiency, implementability, and maintenance-through which researchers can describe, measure, and deploy any algorithms efficiently and effectively. These dimensions must be considered in the context of explicit use cases and transparent methods to ensure that they do not reflect unexpected biases or exacerbate inequities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990558 | PMC |
http://dx.doi.org/10.1093/jamia/ocae005 | DOI Listing |
J Mol Model
January 2025
PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Alappuzha, Kerala, 688003, India.
Holey nanographene, an allotrope of carbon arranged in two dimensions, has gained remarkable attention as a nanomaterial with several potential uses in numerous industries, such as electronics, energy storage, healthcare, and environmental cleanup, because of its high carrier mobility, flexibility, transparency, high surface area, conductivity, and chemical stability. The fundamental holey nanographene is assembled in a linear form to create the holey nanographene chain (HNC) that is being discussed. To fully utilize it in various applications, it is essential to comprehend the basic ideas guiding its behavior at the nanoscale; for that, we find various topological indices for this holey nanographene chain using the cut method.
View Article and Find Full Text PDFPharmaceutics
January 2025
Physics Department and i3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
Magnetic nanoparticles (MNPs) are advanced materials that combine the unique properties of magnetic materials and nanoscale dimensions, enabling a wide range of applications in biomedicine, environmental science, and information technology. This review provides a comprehensive yet accessible introduction to the fundamental principles, characterization techniques, and diverse applications of MNPs, with a focus on their nanoscale magnetic properties, such as superparamagnetism, single-domain behavior, and surface effects. It also delves into their classification and the critical role of parameters like magnetic anisotropy and blocking temperature.
View Article and Find Full Text PDFNanotechnology
January 2025
Xidian University, Room 120, G building, Southern campus of Xidian University, Xi'an, Shaanxi, 710126, CHINA.
The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
USC Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089-1455, USA.
Voice quality serves as a rich source of information about speakers, providing listeners with impressions of identity, emotional state, age, sex, reproductive fitness, and other biologically and socially salient characteristics. Understanding how this information is transmitted, accessed, and exploited requires knowledge of the psychoacoustic dimensions along which voices vary, an area that remains largely unexplored. Recent studies of English speakers have shown that two factors related to speaker size and arousal consistently emerge as the most important determinants of quality, regardless of who is speaking.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
January 2025
Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!