Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dehydrocurvularin (DCV) is a promising lead compound for anti-cancer therapy. Unfortunately, the development of DCV-based drugs has been hampered by its poor solubility and bioavailability. Herein, we prepared a DCV-loaded mPEG-PLGA nanoparticles (DCV-NPs) with improved drug properties and therapeutic efficacy. The spherical and discrete particles of DCV-NPs had a uniform diameter of 101.8 ± 0.45 nm and negative zeta potential of -22.5 ± 1.12 mV (pH = 7.4), and its entrapment efficiency (EE) and drug loading (DL) were ∼53.28 ± 1.12 and 10.23 ± 0.30%, respectively. the release of DCV-NPs lasted for more than 120 h in a sustained-release pattern, its antiproliferation efficacy towards breast cancer cell lines (MCF-7, MDA-MB-231, and 4T1) was better than that of starting drug DCV, and it could be efficiently and rapidly internalised by breast cancer cells. DCV-NPs were gradually accumulated in tumour areas of mice and significantly suppressed tumour growth. In summary, loading water-insoluble DCV onto nanoparticles has the potential to be an effective agent for breast cancer therapy with injectable property and tumour targeting capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1061186X.2024.2309566 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!