Background: L. is one of the most important aromatic crops and is cultivated worldwide for essential oils (EOs).
Objectives: The aim of the present study was to investigate the potential of two cyanobacteria, ISB42 and var. ISB65, as biological-elicitors to improve the growth and essential oil production of .
Materials And Methods: In this experiment, inoculation of with cyanobacteria was performed by adding 1% cyanobacterial suspension to the soil of treated pots on the first time of planting and every 20 days thereafter. The experiment was performed in a randomized complete block design in an experimental greenhouse condition. After 90 days planting, the vegetative growth factors, the content of photosynthetic pigments, as well as the quantity and quality of EOs of treated and control plants were evaluated. Also, quantitative changes in the expression of some menthol biosynthesis-related genes were investigated.
Results: Cyanobacterial application led to significant increases in growth indices including root and shoot biomass, leaf number, leaf area, node number and ramification, as well as photosynthetic pigments content. The statistical analysis showed a 41-75 % increase in some of these growth indices, especially in Nostoc-treated plants. and var. inoculation led to a 13% and 25% increase in the EOs content of , respectively. The EOs components were also affected by cyanobacterial treatments. According to the statistical analysis, Nostoc-treated plants showed the highest amount of (-)-menthone and (-)-limonene, with a 2.36 and 1.87-fold increase compared to the control. and var. inoculation also led to 40% and 98% increase in transcript level of (-)-limonene synthase gene, respectively. The expression of the (-)-menthone reductase gene, was also increased by 65% and 55% in response to and var. application, respectively.
Conclusions: Our data demonstrated that in addition to growth enhancement, these two heterocystous cyanobacteria improved the quantity and quality of EOs by up-regulating the key genes involved in the menthol biosynthetic pathway. Based on our results, these cyanobacteria can be considered valuable candidates in the formulation of low-cost and environmentally friendly biofertilizers in sustainable peppermint production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804067 | PMC |
http://dx.doi.org/10.30498/ijb.2023.368377.3550 | DOI Listing |
Sci Rep
January 2025
Civil and Environmental Engineering Department, Khalifa University, Abu Dhabi, UAE.
Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.
View Article and Find Full Text PDFSci Data
January 2025
Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea.
Salvia sclarea is a medicinal herb from the Lamiaceae family, valued for its essential oil which contains sclareol, linalool, linalyl acetate, and other compounds. Despite its extensive use, the genetic mechanisms of S. sclarea are not well understood.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, 95817, CA, USA.
In this study, we developed a novel strategy for effective bacteria capture, elimination, and detection. The aptamer of Staphylococcus aureus (S. aureus) was immobilized on FeO NPs and partly hybridized with the T strand, which exhibited good bacterial capture efficiency.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!