Significance: Skin color affects light penetration leading to differences in its absorption and scattering properties. COVID-19 highlighted the importance of understanding of the interaction of light with different skin types, e.g., pulse oximetry (PO) unreliably determined oxygen saturation levels in people from Black and ethnic minority backgrounds. Furthermore, with increased use of other medical wearables using light to provide disease information and photodynamic therapies to treat skin cancers, a thorough understanding of the effect skin color has on light is important for reducing healthcare disparities.

Aim: The aim of this work is to perform a thorough review on the effect of skin color on optical properties and the implication of variation on optical medical technologies.

Approach: Published optical coefficients associated with different skin colors were collated and their effects on optical penetration depth and transport mean free path (TMFP) assessed.

Results: Variation among reported values is significant. We show that absorption coefficients for dark skin are to 74% greater than for light skin in the 400 to 1000 nm spectrum. Beyond 600 nm, the TMFP for light skin is greater than for dark skin. Maximum transmission for all skin types was beyond 940 nm in this spectrum. There are significant losses of light with increasing skin depth; in this spectrum, depending upon Fitzpatrick skin type (FST), on average 14% to 18% of light is lost by a depth of 0.1 mm compared with 90% to 97% of the remaining light being lost by a depth of 1.93 mm.

Conclusions: Current published data suggest that at wavelengths beyond 940 nm light transmission is greatest for all FSTs. Data beyond 1000 nm are minimal and further study is required. It is possible that the amount of light transmitted through skin for all skin colors will converge with increasing wavelength enabling optical medical technologies to become independent of skin color.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807857PMC
http://dx.doi.org/10.1117/1.JBO.29.1.010901DOI Listing

Publication Analysis

Top Keywords

skin color
20
skin
17
light skin
12
light
11
color optical
8
optical properties
8
color light
8
skin types
8
optical medical
8
skin colors
8

Similar Publications

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Over the past ten years, there has been an increasing demand for reliable consumer wearables as users are inclined to monitor their health and fitness metrics in real-time, especially since the COVID-19 pandemic. Reflectance pulse oximeters in fitness trackers and smartwatches provide convenient, non-invasive SpO measurements but face challenges in achieving medical-grade accuracy, particularly due to difficulties in capturing physiological signals, which may be affected by skin pigmentation. Hence, this study sets out to investigate the influence of skin pigmentation, particularly in individuals with darker skin, on the accuracy and reliability of SpO measurement in consumer wearables that utilise reflectance pulse oximeters.

View Article and Find Full Text PDF

The effect of skin pigmentation on photoplethysmography and, specifically, pulse oximetry has recently received a significant amount of attention amongst researchers, especially since the COVID-19 pandemic. With most computational studies observing overestimation of arterial oxygen saturation (SpO) in individuals with darker skin, this study seeks to further investigate the root causes of these discrepancies. This study analysed intensity changes from Monte Carlo-simulated reflectance PPG signals across light, moderate, and dark skin types at oxygen saturations of 70% and 100% in MATLAB R2024a.

View Article and Find Full Text PDF

Vitiligo is a pigmentation disorder that impacts approximately 0.5% to 2% of the global population. Growing interest surrounds the comorbidities associated with vitiligo.

View Article and Find Full Text PDF

The landscape of available therapeutic options for treatment of genitourinary (GU) cancers is expanding dramatically. Many of these treatments have distinct, sometimes severe, skin toxicities including morbilliform, bullous, pustular, lichenoid, eczematous, psoriasiform, and palmoplantar eruptions. Pruritus and skin pigmentation changes have also been noted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!