Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Simultaneous allocation of service times and buffer capacities in manufacturing systems in a random environment is a NP-hard combinatorial optimisation problem. This paper presents a sophisticated simulation-based optimisation approach for the design of unreliable production lines to maximise the production rate. The proposed method allows for a global search using a Genetic Algorithm (GA), which is coupled with Finite Perturbation Analysis (FPA) as a local search technique. Traditional techniques based on perturbation analysis optimise decision variables of the same nature (e.g. service time only, buffer capacity only), whereas the proposed technique simultaneously provides an allocation of service times and buffer capacities. One of the main focuses of this paper is the investigation of the persistence or absence of the buffer and service rate allocation patterns which are among the most essential insights that come from designing production lines. The results show the superiority of the combined GA-FPA approach regarding GA and FPA in terms of solution quality and convergence behaviour. Moreover, considering instances ranging from 3 to 100 machines, our numerical experiments are in line with the literature for small instances (as similar allocation patterns are identified in our work), but important differences are highlighted for medium/large instances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804957 | PMC |
http://dx.doi.org/10.1080/00207543.2023.2168310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!