This study investigated the oxidative stability of instant fried noodles by applying free and microencapsulated black hollyhock extracts (BHE) and borage extracts (BE) (BE, BHE, ME-BE and ME-BHE). At first, the BE and BHE were encapsulated with whey protein and maltodextrin at a 90:10 ratio through a spray dryer. After evaluating particle characteristics (including anthocyanin content, zeta potential, polydispersity index (PDI), particle size, and morphology), they were added to the noodle formulation (wheat flour 78.5%, NaCl 0.78%, and water 21.21%) at 1% w/w level, and the physicochemical (proximate analysis, pH, color, cooking loss, and texture), sensory properties (taste, odor, color, texture, and overall acceptability), and oxidative stability (acid value, peroxide value, anisidine index, thiobarbituric acid index, conjugated dienes) of the fried noodles were studied. The results showed that the microcapsules had uneven shapes with angular surfaces. There was no significant difference between the zeta potential, particle size, PDI, and encapsulation efficiency of BE- and BHE-loaded microcapsules, and the values reported fell between -34.96 and -34.84 mV, 1.128 and 1.195 μm, 0.247 and 0.283, and 80.08% and 83.47%, respectively. Adding extracts to the functional noodles decreased cooking loss and pH compared to the control. The noodles exhibited a darker color. BE and BHE reduced the oxidation of fried noodle oil, with microencapsulated extracts showing stronger effects during storage ( < .05). Sensory evaluation indicated high acceptability for all samples. Encapsulation effectively preserves the natural antioxidant activities of BE and BHE, providing potential benefits for food processing and storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804102 | PMC |
http://dx.doi.org/10.1002/fsn3.3788 | DOI Listing |
ACS Nano
January 2025
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.
View Article and Find Full Text PDFInorg Chem
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Developing new photocatalysts for the selective oxidation of thioethers to high-value-added sulfoxides under low-oxygen mild conditions is a promising but challenging strategy. Here, a new polyoxometalate-based metal-organic framework (POMOF), , was successfully synthesized, wherein continuous π···π stacking interactions and direct coordination bonds not only strengthen the framework's stability but also accelerate electron transfer. A series of experiments and theoretical studies, including control experiments, kinetic studies, electrochemical spectroscopic analyses, and electron paramagnetic resonance, revealed the synergistic catalytic effect among Co(II) metal centers, BWO, and the photosensitizer TPT.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco.
Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.
View Article and Find Full Text PDFAdv Mater
January 2025
Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
The energy density of layered oxides of Li-ion batteries can be enhanced by inducing oxygen redox through replacing transition metal (TM) ions with Li ions in the TM layer. Undesirably, the cathodes always suffer from unfavorable structural degradation, which is closely associated with irreversible TM migration and slab gliding, resulting in continuous capacity and voltage decay. Herein, attention is paid to the Li ions in the TM layer (Li) and find their extra effects beyond inducing oxygen redox, which has been rarely mentioned.
View Article and Find Full Text PDFToxicol Rep
June 2025
Era College of Pharmacy, Era University, Sarfarajgung, Lucknow-Hardoi Road, Lucknow, Uttar Pradesh, India.
Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!