The potential applications of plant extract and nanoparticles in antibacterial and antioxidant studies have garnered significant interest in recent times. Despite being utilized in Ethiopian traditional medicine, (qetetina) constituents and its usage in nanoparticle synthesis remain relatively unexplored. This study explores the potential of the plant extract and its nanoparticles for antibacterial and antioxidant applications, with a focus on the leaf extracts and its silver nanoparticles. The leaf extract was analyzed using LC-MS and GC-MS and found to contain over 70 compounds, including glycosides, phenolic compounds, flavonoids, and fatty acids. The synthesized nanoparticles had a maximum absorbance of 408 nm, with a size range of 2-40 nm and showed a spherical shape. Using the agar well diffusion method, the extract and nanoparticles were evaluated against Gram-positive ( ATCC 2592, ATCC12386) and Gram-negative bacteria (Acinetobacter baumannii ATCC19606, Pseudomonas aeruginosa ATCC27853) bacterial strains. In terms of antibacterial effects, both the silver nanoparticles and leaf extract displayed a greater impact on gram-positive bacterial strains over gram-negative bacterial strains. Additionally, the tests for lowest inhibitory and bactericidal concentration indicated similar outcomes. Notably, the silver nanoparticles exhibited greater antibacterial activity compared to the leaf extract alone. The DPPH (2, 2-diphenylpicrylhydrazyl) assay was conducted to investigate antioxidant activity. The results showed that the plant extract had an IC value of 143 μg/ml, while the synthesized nanoparticle had an IC value of 216 μg/ml, indicating that the plant extract had greater antioxidant activity than the synthesized silver nanoparticles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803913 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e24215 | DOI Listing |
BMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
Environ Pollut
January 2025
Department F.-A. Forel for Environmental and Aquatic Sciences, Section Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland. Electronic address:
Silver nanoparticles (AgNPs) are increasingly used in various consumer products and industrial applications, raising concerns about their environmental impact on aquatic ecosystems. This study investigated the physicochemical stability, trophic transfer, and toxic effects of citrate-coated AgNPs in a freshwater food chain including the diatom Cyclotella meneghiniana and the gastropod Lymnaea stagnalis. AgNPs remained stable in the exposure medium, with a minimal dissolution (<0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
College of Resource and Civil Engineering, Northeast University, Shenyang, China.
This study presents the fabrication and characterization of mixed matrix membranes (MMMs) incorporating green-synthesized silver nanoparticles (AgNPs) using Hibiscus Rosa sinensis extract within a polyethersulfone (PES) matrix for nanofiltration (NF) application. The membranes were evaluated for their pure water permeability, salt rejection, dye removal, and antifouling performance. Results showed that the membrane with 0.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!