First report of root rot in (Chinese cucumber) caused by in China.

Plant Dis

Anhui Agricultural University, 12486, College of Plant Protection, Hefei, Anhui, China;

Published: January 2024

(Chinese cucumber) is one of the important perennial herbaceous vines in China, with putative pharmacological activities including anti-tumor and lowering blood lipids. In July 2022, plants with brownish roots and chlorotic leaves were observed in several orchards in Qianshan, Anhui province, China (30°34'N, 116° 30'E). The disease incidence reached approximately 10% within an area spanning 20 ha, and was higher in poorly drained orchards. To investigate this root rot disease, five symptomatic plants were collected from the diseased orchards in Qianshan. Subsequently, small sections of the diseased roots were surface sterilized using 1% sodium hypochlorite and 75% ethanol for 45 seconds each. Then, sterilized roots were placed onto PDA (20% diced potato, 2% glucose, and 1.5% agar, and distilled water) and incubated at 28℃ in the dark for 6 days. A total of eight isolates with similar morphology were obtained and purified by single spore culturing. Two representative isolates (QSJ4 and QSJ5) were chosen for further analysis. When grown on PDA, the surface of each colony was white with dense aerial mycelium and pale orange color in the center with a white edge on the reverse side. Macroconidia produced on carnation leaf agar plates were falcate, slightly curved, and 3 to 5 septate, with papillate apical cells and indistinct basal cells. Macroconidia were 17.4-42.3 × 2.4-5.8 μm (n = 100). Microconidia were ellipsoidal in shape, slightly curved or not curved, and most were 1-septate, 9.6-16.7 × 1.5-3.8 μm (n = 40). The identity was determined by sequencing four loci (i. e., ITS, , and ) from two representative isolates (Liu et al. 1999; O'Donnell et al. 1998, 2000; Reeb et al. 2004; White et al. 1990). Sequences were deposited in GenBank [ITS (OR267397, OR267398), (OR296634, OR296635), (OR296637, OR296638) and (OR296640, OR296641)]. A phylogenetic analysis was performed with three loci (, , ) comprising a concatenated dataset of 68 strains in the species complex (Han et al., 2023). The results showed that isolates QSJ4 and QSJ5 clustered closely together with reference strains of . Pathogenicity tests were conducted by inoculating three-week-old healthy seedings (cv. Wanlou No. 9) cultivated in substrate soil in pots with a diameter of 17 cm and a height of 10.5 cm. A 20 mL aliquot of spore suspension (10 conidia/mL) of was inoculated to the roots of potted seedlings by irrigation. Each strain was inoculated onto three seedlings. The potted seedlings were inoculated with sterile water as the negative control. Inoculated seedlings were incubated in a growth chamber at 25℃ and 75% relative humidity. After one week, typical symptoms of root necrosis and leaf chlorosis were observed on the inoculated seedlings. Disease symptoms were not observed on the control seedlings. All seedlings showing root necrosis and leaf chlorosis caused by the inoculations were subjected to fungal isolation, and the results showed that the reisolated colonies matched the inoculated ones for morphologies and ITS sequences. has been previously reported to cause disease on L. in Brazil (Medeiros Araujo et al. 2021), Colla in south Sulawesi (Maryani et al. 2019), Miller and Lour. in China (Wang et al. 2019). To our knowledge, this is the first report of causing Fusarium root rot of in China.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-23-2403-PDNDOI Listing

Publication Analysis

Top Keywords

root rot
12
chinese cucumber
8
orchards qianshan
8
representative isolates
8
isolates qsj4
8
qsj4 qsj5
8
potted seedlings
8
inoculated seedlings
8
root necrosis
8
necrosis leaf
8

Similar Publications

First Report of Causing Root Rot on Tulip Poplar in Tennessee and the United States.

Plant Dis

January 2025

Tennessee State University, Otis Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, Tennessee, United States, 37110;

Tulip poplar () is a member of the Magnolia family, is a large, fast-growing, long-lived, deciduous tree native to eastern North America. One-year-old tulip poplar seedlings grown under field conditions in a commercial nursery in Warren County, Tennessee, exhibited severe root rot in May 2024. Dark brown to black lesions were observed on the affected roots.

View Article and Find Full Text PDF

Wheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.

View Article and Find Full Text PDF

Incidence, Distribution, and Pathogenicity of Fungi Growing on Sugar Beet Roots on Top of Outdoor Piles in Idaho.

Plant Dis

January 2025

USDA ARS, Northwest Irrigation and Soils Research Laboratory, 3793 North 3600 East, Kimberly, Idaho, United States, 83341;

Sugar beet roots in Idaho are held under ambient conditions in outdoor storage piles which can lead to fungal growth and rot and substantial sucrose loss. Thus the incidence, distribution, and pathogenicity of fungi associated with fungal growth on the surface of sugar beet roots on top of outdoor piles was investigated. The surface fungal growth on sugar beet roots held on top of 14 Idaho outdoor piles [tarped ventilated (TV) piles and piles with no tarps or ventilation (NTV) at 7 locations] was assessed in 2018-19 and 2019-20.

View Article and Find Full Text PDF

Background: Root rot is a major disease affecting alfalfa (Medicago sativa L.), causing significant yield losses and economic damage. The primary pathogens include Fusarium spp.

View Article and Find Full Text PDF

Unlocking olive rhizobacteria: harnessing biocontrol power to combat olive root rot and promote plant growth.

Int Microbiol

January 2025

Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.

Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!