Alzheimer's disease is a neurodegenerative disorder accounting for 60-80% of dementia cases and is accompanied by a high mortality rate in patients above 70 years of age. The formation of senile plaques composed of amyloid-β protein is a hallmark of Alzheimer's disease. Beta-site APP cleaving enzyme 1 (BACE1) is a proteolytic enzyme involved in the degradation of amyloid precursor protein, which further degrades to form toxic amyloid-β fragments. Hence, inhibition of BACE1 was stated to be an effective strategy for Alzheimer's therapeutics. Keeping in mind the structures of different BACE1 inhibitors that had reached the clinical trials, we designed a library of compounds (total 164) based on a substituted 5-amino tetrazole scaffold which was an isosteric replacement of the cyclic amidine moiety, a common component of the BACE1 inhibitors which reached the clinical trials. The scaffold was linked to different structural moieties with the aid of an amide or sulfonamide bond to design some novel molecules. Molecular docking was initially performed and the top 5 molecules were selected based on docking scores and protein-ligand interactions. Furthermore, molecular dynamic simulations were performed for these molecules (3g, 7k, 8n, 9d, 9g) for 100 ns and MM-GBSA calculations were performed for each of these complexes. After critical evaluation of the obtained results, three potential molecules (9d, 8n, and 7k) were forwarded for prolonged stability studies by performing molecular dynamic simulations for 250 ns and simultaneous MM-GBSA calculations. It was observed that the compounds (9d, 8n, and 7k) were forming good interactions with the amino acid residues of the catalytic site of the enzyme with multiple non-covalent interactions. In MD simulations, the compounds have shown better stability and better binding energy throughout the runtime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-023-10792-7 | DOI Listing |
Brain Sci
November 2024
Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Background/objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 () inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM).
Methods: T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain.
Curr Alzheimer Res
January 2025
Silicon Script Sciences Private Limited, Bharatpur, Gorahi, Dang, 22400, Nepal.
Background: Alzheimer's disease (AD) is marked by cognitive decline, amyloid plaques, neurofibrillary tangles, and cholinergic loss. Due to the limited success of amyloid-targeted therapies, attention has shifted to new non-amyloid targets like phosphodiesterases (PDE). This study investigates the potential of phytomolecules and derivatives, particularly 8-Prenyldaidzein, in AD treatment.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain.
Alzheimer's disease (AD) is a major neurodegenerative disorder that courses with chronic neuroinflammation. Pleiotrophin (PTN) is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ which is upregulated in different neuroinflammatory disorders of diverse origin, including AD. To investigate the role of RPTPβ/ζ in neuroinflammation and neurodegeneration, we used eight-to ten-month-old APP/PS1 AD mouse model.
View Article and Find Full Text PDFSAR QSAR Environ Res
December 2024
Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicine, Hanoi University of Pharmacy, Hanoi, Vietnam.
A comprehensive computational strategy that combined QSAR modelling, molecular docking, and ADMET analysis was used to discover potential inhibitors for β-secretase 1 (BACE-1). A dataset of 1,138 compounds with established BACE-1 inhibitory activities was used to build a QSAR model using mol2vec descriptors and support vector regression. The obtained model demonstrated strong predictive performance (training set: = 0.
View Article and Find Full Text PDFACS Nano
January 2025
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
More than the sparse infiltration in glioblastoma, cytotoxic T lymphocytes (CTLs) also function inefficiently and overexpress the inhibitory markers, especially the identified NK cell receptor (NK1.1). However, most studies solely focus on how to augment tumor-infiltrating CTLs and overlook their killing maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!