Laboratory assessment of the acaricidal, repellent and anti-cholinesterase effects of Melaleuca alternifolia and Chamaemelum nobile essential oils against Hyalomma scupense ticks.

Vet Res Commun

Laboratory of Functional Physiology and Valorization of Bio-Resources (LR23ES08), Higher Institute of Biotechnology of Beja, University of Jendouba, Habib Bourguiba Street, Box 382, 9000, Beja, Tunisia.

Published: June 2024

In cattle, Hyalomma scupense serves as an important vector of several pathogens resulting in diseases, subsequently affecting the agricultural field as well as the economy. Resistance to chemical acaricides has become widespread affirming the need for new drugs to tick control. The goal of this study was to investigate the acaricidal, repellent activities as well as the putative mode of action of two essential oils (EOs) from Melaleuca alternifolia (Tea tree) and Chamaemelum nobile (Roman chamomile) on Hyalomma scupense. The chemical composition of EOs was also evaluated. Different concentrations of EOs were tested in vitro for their acaricidal property on adults and larvae of H. scupense using adult immersion test (AIT) and larval packet test (LPT). Additionally, using Ellman's spectrophotometric method, the anticholinesterase (AChE) inhibition activity of M. alternifolia and C. nobile EOs was assessed in order to understand their putative mode of action. The main compounds of C. nobile were α-Bisabolene (22.20%) and (E)-β-Famesene (20.41%). The major components in the analyzed M. alternifolia were Terpinen-4-ol (36.32%) and γ-Terpinene (13.69%). Adulticidal and larvicidal assays demonstrated a promising efficacy of the essential oils against tick H. scupense. The lethal concentration (LC) values obtained for M. alternifolia and C. nobile oils were 0.84 and 0.96 mg/mL in the AIT and 0.37 and 0.48 mg/mL in the LPT, respectively. Regarding repellent activity, M. alternifolia achieved 100% repellency at the concentration of 1 mg/mL while C. nobile showed 95.98% repellency activity at concentration of 4 mg/mL. Also, M. alternifolia and C. nobile EOs displayed potent AChE inhibition with IC value of 91.27 and 100.12 μg/mL, respectively. In the present study, M. alternifolia and, to a lesser degree, C. nobile EOs were found to be effective in vitro acaricides, repellents and acetylcholinesterase inhibitor against H. scupense ticks. These plants may represent an economical and sustainable alternative to toxic synthetic acaricides in the management of ectoparasites of veterinary importance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11259-024-10313-3DOI Listing

Publication Analysis

Top Keywords

essential oils
12
hyalomma scupense
12
alternifolia nobile
12
nobile eos
12
acaricidal repellent
8
alternifolia
8
melaleuca alternifolia
8
nobile
8
chamaemelum nobile
8
scupense ticks
8

Similar Publications

Plant individuals within a species can differ markedly in their leaf chemical composition, forming so-called chemotypes. Little is known about whether such differences impact the microbial communities associated with leaves and how different environmental conditions may shape these relationships. We used Tanacetum vulgare as a model plant to study the impacts of maternal effects, leaf terpenoid chemotype, and the environment on the leaf bacterial community by growing plant clones in the field and a greenhouse.

View Article and Find Full Text PDF

With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.

View Article and Find Full Text PDF

Enhancing Microemulsion-Based Therapeutic Drug Delivery: Exploring Surfactants, Co-Surfactants, and Quality-by-Design Strategies within Pseudoternary Phase Diagrams.

Crit Rev Ther Drug Carrier Syst

January 2025

Associate Professor of Pharmaceutics, Faculty of Health and Allied Sciences, Amity University Noida India, Pharmaceutics Domain, Uttar Pradesh, India; Member, Indian National Young Academy of Sciences (INYAS), INSA, New Delhi, India.

Microemulsions (MEs) are homogeneous, isotropic, transparent, and thermodynamically stable mixtures of water, oil, and surfactants. Their unique properties have garnered increasing interest across various fields, including chemistry, pharmacology, biotechnology, and biology. This review aims to provide a comprehensive overview of ME compositions, their macroscopic appearances, and the roles of their essential components - oil, water, surfactant, and co-surfactant - in controlling the nature and stability of MEs.

View Article and Find Full Text PDF

Monoterpenoids are interesting hydrocarbons typically found in essential oils and have a significant role in medicinal and biological purposes. The goal of this study was to investigate the effects of two monoterpenoids, carvacrol (CAR) and menthol (MEN), supplemented with leaf meal (MOLM) based diets on growth parameters, digestibility and body composition of Nile tilapia (). Alongside the basal diet (control-T1), nine experimental diets supplemented with categorized levels of CAR and MEN at 200, 300 and 400 mg/kg individually and their mixtures (MIX) (1:1) (CAR-T2, 200; T3, 300; T4, 400 mg/kg, MEN-T5, 200; T6, 300; T7, 400 mg/kg and MIX- (1:1) T8, 200; T9, 300; T10, 400 mg/kg) were fed to the fingerlings (6.

View Article and Find Full Text PDF

This work leverages the additive antipathogenic effects of natural extracts/essential oils (EOs) and probiotics for the treatment of acne vulgaris associated with () and eczema complicated by secondary infections with (). Six probiotic strains and various extracts/EOs were evaluated in a large screening to evaluate their potential against both pathogens. PCB003 was able to inhibit the growth of both pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!