Desalination plays a crucial role in addressing water scarcity and promoting sustainable development. However, the presence of high boron content in seawater poses a significant challenge. This study introduces a progressive freezing-melting method that effectively removes boron while desalinating seawater. The experimental results indicated that salinity and boron rate of removal increased with freezing temperature and decreased with freezing duration. Among the experimental melting methods, ultrasonic melting (UM) and oscillatory melting (OM) were superior to natural melting (NM) for boron removal and desalination, with oscillatory melting proving to be the most effective. Specifically, when seawater was frozen at - 20 °C for 44 h followed by OM of 55% of the ice, salinity and boron removal rates reached 96.79% and 97.60%, respectively. The concentrations of boron and salinity in the treated seawater were only 0.777‰ and 0.149 mg/L. Moreover, the estimated theoretical energy consumption for treating 1 m of seawater was calculated to be 5.95 kWh. This study not only contributes to environmental sustainability but also holds significant potential due to its high efficiency in desalination and boron removal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-32097-4 | DOI Listing |
Chemosphere
December 2024
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15 Bratislava, Slovak Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic. Electronic address:
The highly efficient degradation of persistent organic substances by electrochemical advanced oxidation processes (EAOPs), which don't result in the formation of potentially harmful by-products, is crucial for the future of water management. In this study, boron-doped diamond electrodes (BDDE) with three morphologies (planar 2D, microstructured 2D, and macroporous 3D) were employed for the anodic oxidation of diclofenac (DCF) in two working electrolytes (NaCl and NaSO). In total, 11 by-products formed during the electrochemical oxidation of DCF were identified via HPLC-HRMS.
View Article and Find Full Text PDFJ Fluoresc
December 2024
CSIR-Central Scientific Instrument Organization (CSIO), Chandigarh, India.
Fluoride detection in water is a critical issue that has received extensive attention recently. Researchers have focused on developing practical and reliable methods for detecting Fluoride in water, and fluorescent carbon dots have emerged as a promising solution. These dots are easy to synthesise, highly fluorescent and stable, making them an ideal choice for this application.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:
To address the limitations, such as complex treatment processes, reduced durability, and poor reusability, of typical micro- and nanoscale adsorbents for boron removal, a simple method for removing residual boron is introduced using a multiscale porous anion-exchangeable sponge (MP-AES) that electrostatically attracts boron in areas with locally high pH. Because commercially available anion-permselective materials are absent, custom nanoporous materials surrounded by microporous melamine foam are used to increase surface area and durability under repeated compression. The hydrophilic porous sponge facilitates liquid diffusion, enhancing adsorption in the user-friendly system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India.
A simple one-step deposition-precipitation method was used to synthesize highly active and well-defined CuNi alloy bimetallic nanoparticles supported on h-BN/g-CN. The nanocomposite was applied for hydrogen gas evolution via seawater splitting and photocatalytic chloramphenicol (CHP) removal. Through TEM and synchrotron studies, the formation of CuNi alloy and uniform distribution of CuNi bimetallic nanoparticles on the h-BN/g-CN surface was observed.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
The structure of novel large pore borosilicate zeolite EMM-59 (|CHN|[BSiO]) with localized framework boron sites was determined by using three-dimensional electron diffraction (3D ED) and scanning transmission electron microscopy (STEM) imaging. EMM-59 was synthesized using 2,2-(cyclopentane-1,1-diyl)bis(,-diethyl--methylethan-1-aminium) as an organic structure-directing agent (OSDA). The framework has a three-dimensional intersecting channel system delimited by 12 × 10 × 10-ring openings and contains 28 T and 60 oxygen atoms in the asymmetric unit, making it the most complex monoclinic zeolite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!