Anthropogenic mortality is a major cause of global mortality in terrestrial vertebrates. Quantifying its impact on the dynamics of threatened species is essential to improve their conservation. We investigated cause-specific mortality in Canarian houbara bustards (Chlamydotis undulata fuertaventurae), an endangered subspecies endemic to the Canary Islands. We monitored 51 individuals tagged with solar-powered GSM/GPRS loggers for an average of 3.15 years, and recorded 7 casualties at aerial lines (13.73% of the sample; 5 at power lines, 2 at telephone lines), 1 (1.96%) at a wire fence, 4 road kills (7.84%) and 1 case of predation by cat (1.96%). Cox proportional hazards models showed that anthropogenic and natural annual mortality rates were similar (respectively, 6.20% and 6.36% of the individuals). We estimate that 33-35 houbaras die each year in the Canary Islands due to anthropogenic causes. Population viability models using these data and juvenile productivity values obtained over seven years predicted the extinction of the species in 50 years. Eliminating anthropogenic mortality, the population could be recovered, but would still require management actions to improve habitat quality. Conservation measures to reduce anthropogenic mortality due to power line fatalities, roadkills and predation by cats, as well as to increase productivity, are urgently needed, particularly on Fuerteventura, where houbaras are on the brink of extinction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810086 | PMC |
http://dx.doi.org/10.1038/s41598-024-52641-z | DOI Listing |
Viruses
December 2024
Sovon Dutch Centre for Field Ornithology, 6525 ED Nijmegen, The Netherlands.
Highly pathogenic avian influenza (HPAI) epizootics have caused repeated mass mortality events among wild birds. The effect of the infection is potentially detrimental for a variety of bird species, including the Peregrine Falcon (). The numbers of wintering and breeding Peregrine Falcons in the Netherlands have recently declined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
The question of what mechanisms maintain tropical biodiversity is a critical frontier in ecology, intensified by the heightened risk of biodiversity loss faced in tropical regions. Ecological theory has shed light on multiple mechanisms that could lead to the high levels of biodiversity in tropical forests. But variation in species abundances over time may be just as important as overall biodiversity, with a more immediate connection to the risk of extirpation and biodiversity loss.
View Article and Find Full Text PDFVet Sci
January 2025
Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
The ability to rapidly respond to wildlife health events is essential. However, such events are often unpredictable, especially with anthropogenic disturbances and climate-related environmental changes driving unforeseen threats. Many events also are short-lived and go undocumented, making it difficult to draw on lessons learned from past investigations.
View Article and Find Full Text PDFSci Rep
January 2025
Agroecology and Environment, Agroscope, Reckenholzstrasse 191, Zürich, 8046, Switzerland.
Solitary wild bees play a key role as pollinators of wild plants and crops, but they are increasingly at risk from anthropogenic global change, such as climate warming. However, how warmer temperature during overwintering affects reproductive success of those bees remains largely unknown. In a semi-field experiment we assessed individual life-long reproductive success of 144 females of the solitary bee species Osmia bicornis that had been wintered at three different temperatures.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
Background: Viral haemorrhagic fevers (VHFs) are identified by international health authorities as priorities for research and development, as they pose a threat to global health and economy. VHFs are zoonotic diseases whose acute forms in humans present a haemorrhagic syndrome and shock, with mortality rates of up to 90%. This work aims at synthetizing existing knowledge on spatial and spatially aggregable determinants that support the emergence and maintenance of VHFs in African countries covered by tropical moist forest, to better identify and map areas at risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!