Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The heavy use of nitrogen fertilizer in intensive agricultural areas often leads to nitrate accumulation in subsurface soil and nitrate contamination in groundwater, which poses a serious risk to public health. Denitrifying microorganisms in the subsoil convert nitrate to gaseous forms of nitrogen, thereby mitigating the leaching of nitrate into groundwater. Here, we investigated denitrifying microorganisms in the deep vadose zone of a typical intensive agricultural area in China through microcosm enrichment, genome-resolved metagenomic analysis, and denitrifying bacteria isolation. A total of 1000 metagenome-assembled genomes (MAGs) were reconstructed, resulting in 98 high-quality, dereplicated MAGs that contained denitrification genes. Among them, 32 MAGs could not be taxonomically classified at the genus or species level, indicating that a broader spectrum of taxonomic groups is involved in subsoil denitrification than previously recognized. A denitrifier isolate library was constructed by using a strategy combining high-throughput and conventional cultivation techniques. Assessment of the denitrification characteristics of both the MAGs and isolates demonstrated the dominance of truncated denitrification. Functional screening revealed the highest denitrification activity in two complete denitrifiers belonging to the genus . These findings greatly expand the current knowledge of the composition and function of denitrifying microorganisms in subsoils. The constructed isolate library provided the first pool of subsoil-denitrifying microorganisms that could facilitate the development of microbe-based technologies for nitrate attenuation in groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c06466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!