Chlorogenic acid (CA) is often combined with dietary fiber polysaccharides in plant foods, which may affect its digestive behavior and antioxidant activity. This study constructed a biomimetic dietary fiber (BDF) model by combining bacterial cellulose (BC) and pectin with CA and investigated the digestive behavior of CA in BDF. Additionally, the study examined the interaction and synergistic effects of polysaccharides and CA against oxidation. Results showed that BDF and natural dietary fiber had similar microstructures, group properties, and crystallization properties, and polysaccharides in BDF were bound to CA. After simulated gastrointestinal digestion, 41.03% of the CA existed in a conjugated form, and it was possibly influenced by the interaction between polysaccharides and CA. And the release of CA during simulated digestion potentially involved four mechanisms, including the disintegration of polysaccharide-CA complex, the dissolution of pectin, escape from BC-pectin (BCP) network structure, and diffusion release. And polysaccharides and CA may be combined through noncovalent interactions such as hydrogen bonding, van der Waals force, or electrostatic interaction force. Meanwhile, polysaccharides-CA combination had a synergistic antioxidant effect by the results of free-radical scavenging experiments, it was probably related to the interaction between polysaccharides and CA. The completion of this work has a positive significance for the development of dietary intervention strategies for oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c08886DOI Listing

Publication Analysis

Top Keywords

dietary fiber
16
digestive behavior
12
chlorogenic acid
12
biomimetic dietary
8
interaction polysaccharides
8
polysaccharides
7
dietary
5
study digestive
4
behavior chlorogenic
4
acid biomimetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!