AI Article Synopsis

  • The traditional flu vaccines are made from inactivated viruses produced in chicken eggs, but this process is slow and can lead to mismatched strains, affecting vaccine efficacy.
  • Subunit-based vaccines offer quicker production but often need adjuvants like MF59, which primarily generates a helper T-cell type 2 (Th2) immune response, less optimal for strong protection against influenza.
  • A study used acetalated dextran (Ace-DEX) to create microparticles that effectively encapsulate the Th1-stimulating adjuvant cGAMP, demonstrating that these particles provide stronger immune responses compared to conventional adjuvants in mice.

Article Abstract

The most common influenza vaccines are inactivated viruses produced in chicken eggs, which is a time-consuming production method with variable efficacy due to mismatches of the vaccine strains to the dominant circulating strains. Subunit-based vaccines provide faster production times in comparison to the traditional egg-produced vaccines but often require the use of an adjuvant to elicit a highly protective immune response. However, the current FDA approved adjuvant for influenza vaccines (MF59) elicits a primarily helper T-cell type 2 (Th2)-biased humoral immune response. Adjuvants that can stimulate a Th1 cellular response are correlated to have more robust protection against influenza. The cyclic dinucleotide cGAMP has been shown to provide a potent Th1 response but requires the use of a delivery vehicle to best initiate its signalling pathway in the cytosol. Herein, acetalated dextran (Ace-DEX) was used as the polymer to fabricate microparticles (MPs) via double-emulsion, electrospray, and spray drying methods to encapsulate cGAMP. This study compared each fabrication method's ability to encapsulate and retain the hydrophilic adjuvant cGAMP. We compared their therapeutic efficacy to Addavax, an MF59-like adjuvant, and cGAMP Ace-DEX MPs provided a stronger Th1 response in vaccinated BALB/c mice. Furthermore, we compared Ace-DEX MPs to spray dried MPs composed from a commonly used polymer for drug delivery, poly(lactic-co-glycolic acid) (PLGA). We observed that all Ace-DEX MPs elicited similar humoral and cellular responses to the PLGA MPs. Overall, the results shown here indicate Ace-DEX can perform similarly to PLGA as a polymer for drug delivery and that spray drying can provide an efficient way to produce MPs to encapsulate cGAMP and stimulate the immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10923012PMC
http://dx.doi.org/10.1016/j.ijpharm.2024.123836DOI Listing

Publication Analysis

Top Keywords

ace-dex mps
12
influenza vaccines
8
immune response
8
th1 response
8
spray drying
8
encapsulate cgamp
8
adjuvant cgamp
8
polymer drug
8
drug delivery
8
mps
7

Similar Publications

Rapamycin (rapa), an immunosuppressive medication, has demonstrated considerable effectiveness in reducing organ transplant rejection and treating select autoimmune diseases. However, the standard oral administration of rapa results in poor bioavailability, broad biodistribution, and harmful off-target effects, necessitating improved drug delivery formulations. Polymeric microparticles (MPs) are one such solution and have demonstrated promise in pre-clinical studies to improve the therapeutic efficacy of rapa.

View Article and Find Full Text PDF
Article Synopsis
  • Seasonal influenza viruses lead to epidemics in humans, while avian influenza poses a serious risk due to its ability to infect multiple species and cause severe illness, highlighting the need for a universal vaccine.
  • The study explores using cGAMP, an adjuvant that boosts immune response through the STING pathway, encapsulated in Ace-DEX microparticles to enhance vaccine efficacy; specifically, it evaluates COBRA vaccine candidates in mice.
  • The results showed that cGAMP-adjuvanted COBRA vaccines provoked strong immune responses, including higher specific antibodies and reduced viral impact, proving their potential as a universal influenza vaccine for both seasonal and pre-pandemic strains.
View Article and Find Full Text PDF

Microparticles incorporating dual apoptotic factors to inhibit inflammatory effects in macrophages.

J Pharm Sci

November 2024

Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA. Electronic address:

New approaches to treat autoimmune diseases are needed, and we can be inspired by mechanisms in immune tolerance to guide the design of these approaches. Efferocytosis, the process of phagocyte-mediated apoptotic cell (AC) disposal, represents a potent tolerogenic mechanism that we could draw inspiration from to restore immune tolerance to specific autoantigens. ACs engage multiple avenues of the immune response to redirect aberrant immune responses.

View Article and Find Full Text PDF

Influenza viruses cause a common respiratory disease known as influenza. In humans, seasonal influenza viruses can lead to epidemics, with avian influenza viruses of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against seasonal and pre-pandemic influenza virus strains.

View Article and Find Full Text PDF
Article Synopsis
  • The traditional flu vaccines are made from inactivated viruses produced in chicken eggs, but this process is slow and can lead to mismatched strains, affecting vaccine efficacy.
  • Subunit-based vaccines offer quicker production but often need adjuvants like MF59, which primarily generates a helper T-cell type 2 (Th2) immune response, less optimal for strong protection against influenza.
  • A study used acetalated dextran (Ace-DEX) to create microparticles that effectively encapsulate the Th1-stimulating adjuvant cGAMP, demonstrating that these particles provide stronger immune responses compared to conventional adjuvants in mice.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!