The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-CN) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-CN are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141218 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Porphyrin-based two-dimensional porous materials (SnP-H2TCPP, SnP-ZnTCPP) composed of robust Sn(IV)-porphyrin linkages have been synthesized by reacting -dihydroxo[5,10,15,20-tetraphenylporphyrinato]tin(IV) (SnP) with [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] (HTCPP) and [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato]zinc(II) (ZnTCPP), respectively. The strength of the interaction between the carboxylic acid group of the monomeric porphyrins (HTCPP and ZnTCPP) and the axial hydroxyl moiety of SnP enables the construction of highly stable framework materials, which were characterized by FT-IR, UV-vis, and emmission spectroscopy, powder XRD, elemental analysis, and thermogravimetric analysis (TGA). SnP-H2TCPP and SnP-ZnTCPP absorb visible light strongly over a wide range, demonstrating weak perturbation in the electronic ground state structures of the π-conjugated aromatic moieties compared to the starting monomeric units.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
Eliminating hazardous antibiotics from aquatic environments has become a major concern in recent years. Tetracycline (TC) compounds pose a challenge for the selective degradation of harmful chemical groups. In this study, we successfully designed carbon vacancies in a gCN@WC (GW) heterostructure for the effective removal of TC pollutants under visible light.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Designing and optimizing photocatalysts to maximize the use of sunlight and achieve fast charge transport remains a goal of photocatalysis technology. Herein, a full-spectrum-response BiOBr:Er@BiO core-shell S-scheme heterojunction is designed with [Bi─O] tetrahedral sharing using upconversion (UC) functionality, photothermal effects, and interfacial engineering. The UC function of Er and plasmon resonance effect of BiO greatly improves the utilization of sunlight.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
Imine-based covalent organic frameworks (COFs) have been widely applied in photocatalytic hydrogen peroxide (HO) production because of their highly crystalline properties and tunable chemical structures. However, the inherent polarization of C═N linkage brings a high energy barrier for π-electron delocalization, impeding the in-plane photoelectron transfer process, which leads to an inadequate efficiency of HO photosynthesis. In addition, the chemical stability of most imine-COFs remains insufficient due to the reversible nature of imine linkage.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India.
The efficacy of the nanocomposite of manganese dioxide and diosgenin-incorporated chitosan (MnO/Dio@CS) was assessed by studying the photodegradation of two organic dyes, Acid Green (AG) and Malachite Green Oxalate (MGO), under visible light irradiation. The synthesized MnO/Dio@CS nanocomposites were characterized by Field Emission Scanning Electron Microscopy (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis spectroscopy. The MnO/Dio@CS nanocomposites exhibited exceptional photocatalytic efficacy, prolonged durability, and quick degradation of the dye solution to 87.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!