Impaired macrophage polarization or the high levels of reactive oxygen species (ROS) produced by high glucose conditions and bacterial infection are the primary factors that make healing diabetic wounds difficult. Here, we prepared an OGLP-CMC/SA hydrogel with a double network structure that was synthesized with oxidized Ganoderma lucidum polysaccharide (OGLP), sodium alginate (SA) and carboxymethyl chitosan (CMC) as the matrix. The results showed that the OGLP-CMC/SA hydrogel had good mechanical properties, tissue adhesion, oxidation resistance and biocompatibility. Moreover, the hydrogel could effectively improve the proliferation and migration of fibroblasts, also can enhance antibacterial properties. We found that the OGLP-CMC/SA hydrogel can promote the polarization of M1 macrophages towards the M2 and decrease intracellular ROS levels, effectively reduce the inflammatory response, and promote epidermal growth, the development of skin appendages and collagen deposition in wounds, which hasten diabetic wound healing. Therefore, using this versatile biologically active new hydrogel network constructed with OGLP provides a promising therapeutic strategy for chronic diabetic wound repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.129682DOI Listing

Publication Analysis

Top Keywords

diabetic wound
12
oglp-cmc/sa hydrogel
12
ganoderma lucidum
8
lucidum polysaccharide
8
wound healing
8
macrophage polarization
8
hydrogel
6
polysaccharide hydrogel
4
hydrogel accelerates
4
diabetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!