Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial cellulose (BC) is a remarkable biomacromolecule with potential applications in food, biomedical, and other industries. However, the low economic feasibility of BC production processes hinders its industrialization. In our previous work, we obtained candidate strains with improved BC production through random mutations in Gluconacetobacter. In this study, the molecular identification of LYP25 strain with significantly improved productivity, the development of chestnut pericarp (CP) hydrolysate medium, and its application in BC fermentation were performed for cost-effective BC production process. As a result, the mutant strain was identified as Gluconacetobacter xylinus. The CP hydrolysate (CPH) medium contained 30 g/L glucose with 0.4 g/L acetic acid, whereas other candidates known to inhibit fermentation were not detected. Although acetic acid is generally known as a fermentation inhibitor, it improves the BC production by G. xylinus when present within about 5 g/L in the medium. Fermentation of G. xylinus LYP25 in CPH medium resulted in 17.3 g/L BC, a 33 % improvement in production compared to the control medium, and BC from the experimental and control groups had similar physicochemical properties. Finally, the overall process of BC production from biomass was evaluated and our proposed platform showed the highest yield (17.9 g BC/100 g biomass).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.129597 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!