Dietary NMN supplementation enhances motor and NMJ function in ALS.

Exp Neurol

Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, United States of America; Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, United States of America. Electronic address:

Published: April 2024

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that causes the degeneration of motor neurons in the motor cortex and spinal cord. Patients with ALS experience muscle weakness and atrophy in the limbs which eventually leads to paralysis and death. NAD is critical for energy metabolism, such as glycolysis and oxidative phosphorylation, but is also involved in non-metabolic cellular reactions. In the current study, we determined whether the supplementation of nicotinamide mononucleotide (NMN), an NAD precursor, in the diet had beneficial impacts on disease progression using a SOD1 mouse model of ALS. We found that the ALS mice fed with an NMN-supplemented diet (ALS mice) had modestly extended lifespan and exhibited delayed motor dysfunction. Using electrophysiology, we studied the effect of NMN on synaptic transmission at neuromuscular junctions (NMJs) in symptomatic of ALS mice (18 weeks old). ALS mice had larger end-plate potential (EPP) amplitudes and maintained better responses than ALS mice, and also had restored EPP facilitation. While quantal content was not affected by NMN, miniature EPP (mEPP) amplitude and frequency were elevated in ALS mice. NMN supplementation in diet also improved NMJ morphology, innervation, mitochondrial structure, and reduced reactive astrogliosis in the ventral horn of the lumbar spinal cord. Overall, our results indicate that dietary consumption of NMN can slow motor impairment, enhance NMJ function and improve healthspan of ALS mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2024.114698DOI Listing

Publication Analysis

Top Keywords

als mice
28
als
11
nmn supplementation
8
nmj function
8
spinal cord
8
mice
7
motor
5
nmn
5
dietary nmn
4
supplementation enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!