Application of manganese oxide-based materials for arsenic removal: A review.

Sci Total Environ

State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.. Electronic address:

Published: March 2024

In the context of growing arsenic (As) contamination in the world, there is an urgent need for an effective treatment approach to remove As from the environment. Industrial wastewater is one of the primary sources of As contamination, which poses significant risks to both microorganisms and human health, as the presence of As can disrupt the vital processes and synthesis of crucial macromolecules in living organisms. The global apprehension regarding As presence in aquatic environments persists as a key environmental issue. This review summarizes the recent advances and progress in the design, strategy, and synthesis method of various manganese-based adsorbent materials for As removal. Occurrence, removal, oxidation mechanism of As(III), As adsorption on manganese oxide (MnO)-based materials, and influence of co-existing solutes are also discussed. Furthermore, the existing knowledge gaps of MnO-based adsorbent materials and future research directions are proposed. This review provides a reference for the application of MnO-based adsorbent materials to As removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170269DOI Listing

Publication Analysis

Top Keywords

adsorbent materials
12
materials removal
8
mno-based adsorbent
8
materials
5
application manganese
4
manganese oxide-based
4
oxide-based materials
4
materials arsenic
4
removal
4
arsenic removal
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Functional flexible adsorbents and their potential utility.

Chem Commun (Camb)

January 2025

Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.

Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.

View Article and Find Full Text PDF

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Imidazole Cationic-Bridged Pillar[5]arene Polymer as a Recycle Adsorbent for Iodine Capture.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Intelligent Supramolecular Chemistry at the University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

Developing efficient and recyclable iodine adsorbents is crucial for addressing radioactive iodine pollution. An imidazole cation-bridged pillar[5]arene polymer (P5-P5I) was synthesized via a salt formation reaction. P5-P5I exhibited a high iodine vapor capture capacity of 2130.

View Article and Find Full Text PDF

Pesticide contamination in wastewater poses a significant environmental challenge, driven by extensive agricultural use. This study evaluates the removal of chlorpyrifos (CPS) using sugarcane bagasse-based biochar alginate beads in a continuous fixed-bed adsorption column, achieving a remarkable 95-98% removal efficiency. Compared to conventional adsorbents like activated carbon, which typically show CPS adsorption capacities ranging from 50-70 mg g⁻ under similar conditions, the biochar alginate beads demonstrate better performance with a sorption capacity of 91.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!