Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2024.01.001DOI Listing

Publication Analysis

Top Keywords

hsp70 binds
12
non-coding rna
12
rna
9
rna polymerase
8
polymerase iii
8
interaction chaperones
8
chaperones rna
8
rna pol
8
pol iii
8
hsp70
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.

Background: Alzheimer disease (AD) is a progressive neurodegenerative disease that is accountable for the leading case of dementia in elder people. Before, only symptomatic treatments are available for AD. Since 2021, two anti-amyloid antibodies aducanumab and lecanemab have been approved by the US Food and Drug Administration.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).

View Article and Find Full Text PDF

LAP1 Interactome Profiling Provides New Insights into LAP1's Physiological Functions.

Int J Mol Sci

December 2024

Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.

The nuclear envelope (NE), a protective membrane bordering the nucleus, is composed of highly specialized proteins that are indispensable for normal cellular activity. Lamina-associated polypeptide 1 (LAP1) is a NE protein whose functions are just beginning to be unveiled. The fact that mutations causing LAP1 deficiency are extremely rare and pathogenic is indicative of its paramount importance to preserving human health, anticipating that LAP1 might have a multifaceted role in the cell.

View Article and Find Full Text PDF

Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock.

Genes (Basel)

December 2024

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan.

Background/objectives: Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions.

View Article and Find Full Text PDF

Klp2-mediated Rsp1-Mto1 colocalization inhibits microtubule-dependent microtubule assembly in fission yeast.

Sci Adv

January 2025

MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.

Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!