23-hydroxybetulinic acid (23-HA), a main bioactive component isolated from Pulsatilla chinensis (Bunge) Regel, exhibits various pharmacological activities, such as antimelanoma, antileukemia, anti-colon cancer, and antihepatotoxicity. Although the main active ingredient anemoside B4 (AB4) from this plant has been well studied, research on its active metabolite 23-HA is limited. In the present study, a validated HPLC-QQQ-MS/MS method was established for the quantification of 23-HA in rat plasma. Pharmacokinetics analysis showed that the absorption and elimination of 23-HA in rats were rapid, with an oral bioavailability as 12.9 %. After oral administration with 50 mg/kg 23-HA for SD rats, the plasma, urine, feces, and bile samples were collected and analyzed by UPLC-Q Exactive Plus MS and HPLC-QQQ-MS/MS. Seventeen metabolites of 23-HA were identified, and its major metabolic pathways included oxidation, hydration, sulfation, and glucuronidation. This study highlights the first detailed investigation of 23-HA's pharmacokinetics in rats along with its metabolism in vivo, and will provide robust evidence for further research and clinical application of 23-HA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2024.124016 | DOI Listing |
Exp Ther Med
June 2024
Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.
The present study aimed to investigate the effect and mechanism of Pulsatilla compounds on lung adenocarcinoma. The representative drug chosen was the compound 23-HBA. GeneCards, Swiss target prediction, DisGeNET and TCMSP were used to screen out related genes, and MTT and flow cytometry assays were used to verify the inhibitory effect of Pulsatilla compounds on the proliferation of lung adenocarcinoma cells.
View Article and Find Full Text PDFCancer Immunol Immunother
March 2024
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330006, Jiangxi, China.
Macrophage polarization is closely associated with the inflammatory processes involved in the development and chemoresistance of colorectal cancer (CRC). M2 macrophages, the predominant subtype of tumor-associated macrophages (TAMs) in a wide variety of malignancies, have been demonstrated to promote the resistance of CRC to multiple chemotherapeutic drugs, such as 5-fluorouracil (5-FU). In our study, we investigated the potential of 23-Hydroxybetulinic Acid (23-HBA), a significant active component of Pulsatilla chinensis (P.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2024
Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China. Electronic address:
23-hydroxybetulinic acid (23-HA), a main bioactive component isolated from Pulsatilla chinensis (Bunge) Regel, exhibits various pharmacological activities, such as antimelanoma, antileukemia, anti-colon cancer, and antihepatotoxicity. Although the main active ingredient anemoside B4 (AB4) from this plant has been well studied, research on its active metabolite 23-HA is limited. In the present study, a validated HPLC-QQQ-MS/MS method was established for the quantification of 23-HA in rat plasma.
View Article and Find Full Text PDFJ Ethnopharmacol
October 2023
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. Electronic address:
Ethnopharmacological Relevance: Pulsatilla chinensis (Bunge) Regel is a traditional Chinese herbal medicine used to treat intestinal amebiasis, malaria, vaginal trichomoniasis, and bacterial infections. Anemoside B4 (AB4), a pentacyclic triterpenoid saponin, is one of the primary bioactive substances in Pulsatilla chinensis (Bunge) Regel, and gavage administration of AB4 to animals has been demonstrated to exhibit anticancer, anti-inflammatory, and antiviral actions. However, AB4 exposure in plasma is very low after oral administration, and the biotransformation of AB4 in vivo after oral administration remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!