Interictal epileptiform discharges (IED) as large intermittent electrophysiological events are associated with various severe brain disorders. Automated IED detection has long been a challenging task, and mainstream methods largely focus on singling out IEDs from backgrounds from the perspective of waveform, leaving normal sharp transients/artifacts with similar waveforms almost unattended. An open issue still remains to accurately detect IED events that directly reflect the abnormalities in brain electrophysiological activities, minimizing the interference from irrelevant sharp transients with similar waveforms only. This study then proposes a dual-view learning framework (namely V2IED) to detect IED events from multi-channel EEG via aggregating features from the two phases: (1) Morphological Feature Learning: directly treating the EEG as a sequence with multiple channels, a 1D-CNN (Convolutional Neural Network) is applied to explicitly learning the deep morphological features; and (2) Spatial Feature Learning: viewing the EEG as a 3D tensor embedding channel topology, a CNN captures the spatial features at each sampling point followed by an LSTM (Long Short-Term Memories) to learn the evolution of these features. Experimental results from a public EEG dataset against the state-of-the-art counterparts indicate that: (1) compared with the existing optimal models, V2IED achieves a larger area under the receiver operating characteristic (ROC) curve in detecting IEDs from normal sharp transients with a 5.25% improvement in accuracy; (2) the introduction of spatial features improves performance by 2.4% in accuracy; and (3) V2IED also performs excellently in distinguishing IEDs from background signals especially benign variants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!