The hydroxyl radical (·OH) stands as one of the most potent oxidizing agents, capable of engaging in non-selective and instantaneous reactions with contaminants in water. Herein, we present a novel iron sulfide phase (S-FeS) characterized by an unprecedented structure, accompanied by its remarkable hydroxyl radical generation capability and contaminant degradation efficiency surpassing that of the conventional metastable iron sulfide phase, namely, the Mackinawite (FeS). In comparison to FeS, S-FeS exhibits enhanced degradation kinetics and higher efficacy in the removal of methylene blue, ciprofloxacin, and trivalent arsenic. Utilizing density functional theory (DFT) calculations, we postulate the mechanism for the exceptional contaminant degradation performance of S-FeS to be attributed to the increased exposure of the highly reactive (110) crystal facets. This research uncovers a new metastable phase that expands the polymorphisms within the iron sulfide family and showcases its capability for driving the oxygen reduction reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121166 | DOI Listing |
Biopolymers
March 2025
Department of Chemistry, School of Chemical and Physical Sciences, Lovely Professional University, Phagwara, India.
In this paper, we offer a unique green synthetic approach for producing iron sulfide quantum dots (FeS QD)-chitosan composites using gel chemistry. The technique uses the environmental features of chitosan, a biocompatible and biodegradable polysaccharide, and the excellent electrical properties of FeS QDs. By sustainable chemistry principles, the synthesis process is carried out under gentle settings, using aqueous solutions and avoiding hazardous solvents and strong chemicals.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China.
The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.
View Article and Find Full Text PDFWater Res
January 2025
Baohang Environment Co., LTD, Beijing 100070, China. Electronic address:
Iron sulfide (FeS) exhibits superior reactivity toward a wide range of contaminants, making it a promising candidate for environmental remediation in various media, including surface water, wastewater, soil, and groundwater. Driven by green and sustainable development principles, efficient, low-cost, and environmentally friendly biosynthesis has attracted considerable attention and has great environmental remediation potential. This review provides a comprehensive overview of the recent advances in biogenic FeS (bio-FeS), focusing on its synthesis mechanisms, performance characterization, and environmental applications.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China.
Compared with zero-valent iron, iron sulfide has more diverse reactive species and higher reductivity, but it is still prone to be gradually deactivated due to various passivation factors. In this study, a novel reductive material (BMMW@OA) was prepared by ball milling of mackinawite (MW) as raw material and oxalic acid (OA) as modifier, so as to simultaneously improve its reductivity and stability by continuous releasing reductive species and maintaining freshness of the material surface. The BMMW@OA (w/w of MW/OA = 4/1) effectively removed Cr(Ⅵ) from water with wide pH adaptability.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!