High-throughput analysis of hazards in novel food based on the density functional theory and multimodal deep learning.

Food Chem

School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China. Electronic address:

Published: June 2024

The emergence of cultured meat presents the potential for personalized food additive manufacturing, offering a solution to address future food resource scarcity. Processing raw materials and products in synthetic food products poses challenges in identifying hazards, impacting the entire industrial chain during the industry's further evolution. It is crucial to examine the correlation of biological information at different levels and to reveal the temporal dynamics jointly. Proposed active prevention method includes four aspects: (i) Investigating the molecular-level mechanism underlying the binding and dissociation of hazards with proteins represents a novel approach to mitigate matrix effect. (ii) Identifying distinct fragments is a pivotal advancement toward developing a novel screening strategy for hazards throughout the food chain. (iii) Designing an artificial intelligence model-based approach to acquire multi-dimensional histology data also holds significant potential for various applications. (iv) Integrating multimodal data is a practical approach to enhance evaluation and feedback control accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.138468DOI Listing

Publication Analysis

Top Keywords

food
5
high-throughput analysis
4
hazards
4
analysis hazards
4
hazards novel
4
novel food
4
food based
4
based density
4
density functional
4
functional theory
4

Similar Publications

sp. nov. isolated from flowers of winter savoury L.

Int J Syst Evol Microbiol

January 2025

Laboratorio de Bacterias Lcticas y Probiticos, Instituto de Agroqumica y Tecnologa de Alimentos (IATA-CSIC), Av. Agustn Escardino 7, 46980 Paterna, Spain.

A novel strain of the genus , named He02, was isolated from flowers of L. in a survey for lactic acid bacteria associated with wild and cultivated plants in the metropolitan area of Valencia, Spain. Partial 16S rRNA gene sequencing revealed a similarity of 99% to DSM 23037=Ryu1-2.

View Article and Find Full Text PDF

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.

View Article and Find Full Text PDF

De novo biosynthesis of quercetin in Yarrowia Lipolytica through systematic metabolic engineering for enhanced yield.

Bioresour Bioprocess

January 2025

Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.

Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.

View Article and Find Full Text PDF

Purpose Of Review: The term metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a group of progressive steatotic liver conditions that include metabolic dysfunction-associated steatohepatitis (MASH), which has varying degrees of liver fibrosis and may advance to cirrhosis, and independent hepatic steatosis. MASLD has a complex underlying mechanism, with patients exhibiting diverse causes and phases of the disease. India has a pool prevalence of MASLD of 38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!