A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In situ generation of copper(Ⅱ)/diethyldithiocarbamate complex through tannic acid/copper(Ⅱ) network coated hollow mesoporous silica for enhanced cancer chemodynamic therapy. | LitMetric

The Cu complex formed by the coordination of disulfiram (DSF) metabolite diethyldithiocarbamate (DTC), Cu(DTC), can effectively inhibit tumor growth. However, insufficient Cu levels in the tumor microenvironment can impact tumor-suppressive effects of DTC. In this study, we proposed a Cu and DSF tumor microenvironment-targeted delivery system. This system utilizes hollow mesoporous silica (HMSN) as a carrier, after loading with DSF, encases it using a complex of tannic acid (TA) and Cu on the outer layer. In the slightly acidic tumor microenvironment, TA/Cu undergoes hydrolysis, releasing Cu and DSF, which further form Cu(DTC) to inhibit tumor growth. Additionally, Cu can engage in a Fenton-like reaction with HO in the tumor microenvironment to form OH, therefore, chemodynamic therapy (CDT) and Cu(DTC) are used in combination for tumor therapy. In vivo tumor treatment results demonstrated that AHD@TA/Cu could accumulate at the tumor site, achieving a tumor inhibition rate of up to 77.6 %. This study offers a novel approach, circumventing the use of traditional chemotherapy drugs, and provides valuable insights into the development of in situ tumor drug therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.01.121DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
12
tumor
11
complex tannic
8
hollow mesoporous
8
mesoporous silica
8
chemodynamic therapy
8
inhibit tumor
8
tumor growth
8
situ generation
4
generation copperⅡ/diethyldithiocarbamate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!