Evaluation of disposable protective garments against epoxy resin permeation and penetration from anti-corrosion coatings.

Ann Work Expo Health

Department of Public Health, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, United States.

Published: March 2024

AI Article Synopsis

  • Epoxy resins in construction and painting can cause allergic contact dermatitis due to increased use and inadequate skin protection.
  • This study aimed to test how well five types of protective garments resist chemicals found in epoxy-based coatings.
  • Results showed that latex gloves offered the least protection, allowing significant permeation of harmful chemicals during the tests.

Article Abstract

Introduction: Epoxy-based resin formulations are a frequent cause of allergic and irritant contact dermatitis in the construction and painting industries. Cases of epoxy resin contact dermatitis continue to persist across many sectors and are likely attributable to the growing use of epoxy products, including epoxy-based anti-corrosion coatings and inadequate skin protection. There are no published performance data against epoxy resins for garment materials and gloves to guide proper material selection in the workplace.

Objectives: The objective of this study was to evaluate the resistance of 5 protective garment materials against permeation and penetration by bisphenol A diglycidyl ether and its higher oligomers found commonly in epoxy-based anti-corrosion coatings.

Methods: Five disposable garment materials were evaluated for resistance to bisphenol A diglycidyl ether monomers and oligomers during contact with epoxy-based anti-corrosion coatings, including latex gloves, nitrile gloves, Tyvek coveralls, polypropylene/polyethylene (PP/PE) coveralls, and a cotton T-shirt. A permeation test cell system was used to evaluate each garment material against an epoxy-based zinc-rich primer and an epoxy-based intermediate coating using a realistic application method. Glass fiber filters were used to collect permeating and penetrating epoxy resin during a 120-min test period. Bisphenol A diglycidyl ether quantification was performed with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Paint loading, coating thickness, and homogeneity were assessed on polytetrafluoroethylene filters sprayed in series in permeation test cells.

Results: Latex gloves provided the least resistance to permeation by BADGE in coating formulations, with a maximum cumulative permeation over the 2-h test interval of 21.7 ng cm-2 with the primer and 513.8 ng cm-2 with the intermediate coating product. Nitrile gloves were not permeated by either coating formulation. The Tyvek coveralls provided greater protection as compared to the PP/PE coveralls. The cotton T-shirt was penetrated by bisphenol A diglycidyl ether more frequently than any of the tested garment materials and resulted in a maximum cumulative penetration of 128 ng cm-2 with the primer and 28.0 ng cm-2 with the intermediate coating.

Conclusion: Although all the garment materials evaluated during this study provided sufficient protection to prevent cumulative permeation in excess of the established acceptable permeation thresholds, the use of nitrile gloves and Tyvek coverall is highly recommended to minimize skin exposure to bisphenol A diglycidyl ether. We recommend cotton T-shirts to be used under Tyvek coveralls as a secondary layer of skin protection and for added comfort, but not as a primary protection layer.

Download full-text PDF

Source
http://dx.doi.org/10.1093/annweh/wxad084DOI Listing

Publication Analysis

Top Keywords

garment materials
20
bisphenol diglycidyl
20
diglycidyl ether
20
epoxy resin
12
anti-corrosion coatings
12
epoxy-based anti-corrosion
12
nitrile gloves
12
tyvek coveralls
12
permeation
8
permeation penetration
8

Similar Publications

Dementia Care Practice.

Alzheimers Dement

December 2024

Research Program on Cognition and Neuromodulation-Based Interventions, University of Michigan, Ann Arbor, MI, USA.

Alzheimer's disease and related dementias (ADRD) and its associated care pose unique challenges, particularly within minority groups such as Muslim women. This population may face higher rates of ADRD alongside barriers to accessing culturally sensitive care. This abstract emphasizes the crucial role of understanding and integrating Islamic cultural and religious practices into ADRD care.

View Article and Find Full Text PDF

Biopolymer-Based Flame Retardants and Flame-Retardant Materials.

Adv Mater

January 2025

Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.

Polymeric materials featuring excellent flame retardancy are essential for applications requiring high levels of fire safety, while those based on biopolymers are highly favored due to their eco-friendly nature, sustainable characteristics, and abundant availability. This review first outlines the pyrolysis behaviors of biopolymers, with particular emphasis on naturally occurring ones derived from non-food sources such as cellulose, chitin/chitosan, alginate, and lignin. Then, the strategies for chemical modifications of biopolymers for flame-retardant purposes through covalent, ionic, and coordination bonds are presented and compared.

View Article and Find Full Text PDF

Catechins, the main active components of tea polyphenols, boast remarkable antioxidant activities because of their unique structures. This translates to a range of potential health benefits, including fighting antibacterial, inflammation, and even cancers. However, extracting these beneficial compounds can be tricky as they're prone to degradation.

View Article and Find Full Text PDF

N-chlorination of urea-formaldehyde resin microspheres for antibacterial regenerated cellulose fibers.

Int J Biol Macromol

January 2025

Institute of Functional Textiles and Advanced Materials, College of Textiles & Clothing, Qingdao Key Laboratory of Flame-Retardant Textile Materials, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China. Electronic address:

Regenerated cellulose fibers are required for widespread antibacterial applications across various fields. N-halamines have been extensively studied and are regarded as a promising candidate for antibacterial purposes. In this work, we focus on investigating the chlorination performance of urea-formaldehyde resin microspheres (UFRs) and using them as antibacterial additives incorporated into the spinning dope to fabricate antibacterial viscose fibers.

View Article and Find Full Text PDF

Chromic Electrospun Polymer Nanofibers: Preparation, Applications, and the Future.

ACS Appl Mater Interfaces

January 2025

Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, B-9000 Ghent, Belgium.

Physical understanding and determination of different analytes without the need for advanced and additional equipment are highly important, which can be achieved by using stimuli-induced chromic materials. Physical and chemical incorporation of responsive chromophores into different polymers results in the fabrication of chromic polymers. Chromic electrospun nanofibers are prepared using the electrospinning technique, and their stimuli-responsivity is improved due to their high surface-to-volume ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!