Peelable Microwave Absorption Coating with Reusable and Anticorrosion Merits.

ACS Appl Mater Interfaces

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

Published: February 2024

The peelable microwave absorption (MA) coating with reversible adhesion for stable presence on substrates and easy release without any residuals is highly desired in temporary electromagnetic protection, which can quickly enter and disengage the electromagnetic protection state according to the real-time changeable harsh surroundings. On the contrary, with the incorporation of abundant absorbent to achieve excellent MA ability, the tunable adhesion and sufficient cohesion are extremely challenging to fulfill the above requirement. The reported peelable coatings still have problems in controlling adhesion/cohesion strength and coating release, facing substantial residuals after peeling even using complex chemical modification or abundant additives. Herein, a peelable MA coating based on the block characteristics of polar and nonpolar segments of poly(styrene-(ethylene--butylene)-styrene) (SEBS) is successfully developed. The polyaniline-decorated carbon nanotube as a microwave absorber plays a positive influence on the adhesion/cohesion of the coating due to bonding interaction. The competitive effective absorption bandwidth (EAB) of 8.8 GHz and controllable yet reversible adhesion release on various substrates and complex surfaces have been achieved. The reusability endows peelable MA coating with 93% retention of EAB even after ten coating-peeling cycles. The coating with excellent chemical and adhesion stability can effectively protect substrates from salt/acid/alkali corrosion, showing over 98% retention of EAB even after 8 h of accelerated corrosion. Our peelable MA coating via a general yet reliable approach provides a prospect for temporary electromagnetic protection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c17805DOI Listing

Publication Analysis

Top Keywords

electromagnetic protection
12
peelable coating
12
peelable microwave
8
microwave absorption
8
coating
8
absorption coating
8
reversible adhesion
8
temporary electromagnetic
8
retention eab
8
peelable
6

Similar Publications

Evaluation of natural polysaccharides from edible mushrooms for the treatment of male testicular injury caused by X-ray.

J Food Sci

January 2025

Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.

Radiation exposure can lead to reproductive damage (RD), for which there is currently no effective treatment. Natural compounds, particularly fungal polysaccharides, have shown promising therapeutic potential for RD. Due to limited availability of effective polysaccharides, research has turned to alternative sources from edible mushrooms.

View Article and Find Full Text PDF

Effects of light on biological functions and human sleep.

Handb Clin Neurol

January 2025

Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Research Cluster Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.

The nonvisual effects of light in humans are mainly conveyed by a subset of retinal ganglion cells that contain the pigment melanopsin which renders them intrinsically photosensitive (= intrinsically photosensitive retinal ganglion cells, ipRGCs). They have direct connections to the main circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and modulate a variety of physiological processes, pineal melatonin secretion, autonomic functions, cognitive processes such as attention, and behavior, including sleep and wakefulness. This is because efferent projections from the SCN reach other hypothalamic nuclei, the pineal gland, thalamus, basal forebrain, and the brainstem.

View Article and Find Full Text PDF

A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!