Objective: The goal of this review is to discuss the implementation of genome-wide association studies to identify causal mechanisms of vascular disease risk.
Approach And Results: The history of genome-wide association studies is described, the use of imputation and the creation of consortia to conduct meta-analyses with sufficient power to arrive at consistent associated loci for vascular disease. Genomic methods are described that allow the identification of causal variants and causal genes and how they impact the disease process. The power of single-cell analyses to promote genome-wide association studies of causal gene function is described.
Conclusions: Genome-wide association studies represent a paradigm shift in the study of cardiovascular disease, providing identification of genes, cellular phenotypes, and disease pathways that empower the future of targeted drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10857784 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.123.319480 | DOI Listing |
Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.
Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.
BMC Plant Biol
December 2024
Key Laboratory of Biology and Genetics Improvement of Soybean, Zhongshan Biological Breeding Laboratory (ZSBBL), State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Ministry of Agriculture, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Nanjing Agricultural University, Nanjing, 210095, China.
Background: Vegetable soybean is an important legume vegetable. High sucrose content is a significant quality characteristic of vegetable soybean that influences consumers' taste. However, the genetic basis of sucrose content in vegetable soybean is currently unclear.
View Article and Find Full Text PDFGeroscience
December 2024
Department of Ecology, Evolution, and Marine Biology, Department of Molecular, Cellular, and Cell Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Epidemiology and Biostatistics, School of Public Health, Peking University; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
Cardiovascular diseases (CVDs) and cerebrovascular diseases (CeVDs) are closely related vascular diseases, sharing common cardiometabolic risk factors (RFs). Although pleiotropic genetic variants of these two diseases have been reported, their underlying pathological mechanisms are still unclear. Leveraging GWAS summary data and using genetic correlation, pleiotropic variants identification, and colocalization analyses, we identified 11 colocalized loci for CVDs-CeVDs-BP (blood pressure), CVDs-CeVDs-LIP (lipid traits), and CVDs-CeVDs-cIMT (carotid intima-media thickness) triplets.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical and Biomedical Sciences, RILD Building, Royal Devon and Exeter Hospital, University of Exeter, Barrack Road, Exeter, EX2 5DW, UK.
A Type 1 Diabetes Genetic Risk Score (T1DGRS) aids diagnosis and prediction of Type 1 Diabetes (T1D). While traditionally derived from imputed array genotypes, Whole Genome Sequencing (WGS) provides a more direct approach and is now increasingly used in clinical and research studies. We investigated the concordance between WGS-based and array-based T1DGRS across genetic ancestries in 149,265 UK Biobank participants using WGS, TOPMed-imputed, and 1000 Genomes-imputed array genotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!