The smooth and precise transition from totipotency to pluripotency is a key process in embryonic development, generating pluripotent stem cells capable of forming all cell types. While endogenous retroviruses (ERVs) are essential for early development, their precise roles in this transition remains mysterious. Using cutting-edge genetic and biochemical techniques in mice, we identify MERVL-gag, a retroviral protein, as a crucial modulator of pluripotent factors OCT4 and SOX2 during lineage specification. MERVL-gag tightly operates with URI, a prefoldin protein that concurs with pluripotency bias in mouse blastomeres, and which is indeed required for totipotency-to-pluripotency transition. Accordingly, URI loss promotes a stable totipotent-like state and embryo arrest at 2C stage. Mechanistically, URI binds and shields OCT4 and SOX2 from proteasome degradation, while MERVL-gag displaces URI from pluripotent factor interaction, causing their degradation. Our findings reveal the symbiotic coevolution of ERVs with their host cells to ensure the smooth and timely progression of early embryo development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807815PMC
http://dx.doi.org/10.1126/sciadv.adk9394DOI Listing

Publication Analysis

Top Keywords

endogenous retroviruses
8
oct4 sox2
8
retroviruses shape
4
shape pluripotency
4
pluripotency specification
4
specification mouse
4
mouse embryos
4
embryos smooth
4
smooth precise
4
precise transition
4

Similar Publications

Endogenous retroviruses make aging go viral.

Life Med

February 2023

State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.

View Article and Find Full Text PDF

Aging is a complex and heterogeneous process, raising important questions about how aging is differently impacted by underlying genetics and external factors. Recently, migrasomes, newly discovered organelles, have been identified to play important roles in various physiological and pathological processes by facilitating cell-to-cell communication. Thus far, their involvement in cellular senescence and aging remains largely unexplored.

View Article and Find Full Text PDF

HERV-W Env Induces Neuron Pyroptosis via the NLRP3-CASP1-GSDMD Pathway in Recent-Onset Schizophrenia.

Int J Mol Sci

January 2025

State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.

HERVs (Human endogenous retroviruses) are remnants of ancient exogenous retroviruses that have integrated into the human genome, particularly in germ-line cells. Among these, the envelope protein gene (Human endogenous retroviruses W family envelope protein), located on chromosome 7 and primarily expressed in the human placenta, has been closely linked to various neuropsychiatric disorders, including schizophrenia, as well as autoimmune diseases and cancer. Recent studies have highlighted the abnormal expression of cytokines as a key factor in the pathophysiology of schizophrenia.

View Article and Find Full Text PDF

Increasing evidence indicates that human endogenous retroviruses (HERVs) are important to human health and are an underexplored component of many diseases. Certain HERV families show unique expression patterns and immune responses in autism spectrum disorder (ASD) patients compared to healthy controls, suggesting their potential as biomarkers. Despite these interesting findings, the role of HERVs in ASD needs to be further investigated.

View Article and Find Full Text PDF

The human endogenous retroviruses (HERVs) are ancient exogenous retroviruses that were embedded in the germline over 30 million years ago and underwent an endogenization process. They make up roughly 8% of the human genome. HERVs exhibit many physiological and non-physiological functions; for example, they play a role in the development of many diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!