Protocol for iron-catalyzed cross-electrophile coupling of aryl chlorides with unactivated alkyl chlorides.

STAR Protoc

Department of Science and Technology, North Sichuan Medical College, Nanchong, Sichuan 637100, P.R. China; Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China. Electronic address:

Published: March 2024

Organochlorides are a crucial class of electrophiles in organic synthesis. Here, we present a protocol for the cross-electrophile coupling of aryl chlorides with unactivated alkyl chlorides, facilitated by an iron/Bpin catalytic system. We describe steps for the coupling of aryl chlorides with alkyl chlorides, followed by purification of products. This protocol can produce alkylated products with up to 81% yield. For complete details on the use and execution of this protocol, please refer to Zhang et al..

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835013PMC
http://dx.doi.org/10.1016/j.xpro.2024.102846DOI Listing

Publication Analysis

Top Keywords

coupling aryl
12
aryl chlorides
12
alkyl chlorides
12
cross-electrophile coupling
8
chlorides unactivated
8
unactivated alkyl
8
chlorides
6
protocol
4
protocol iron-catalyzed
4
iron-catalyzed cross-electrophile
4

Similar Publications

Preformed Ni(0) complexes are rarely used as precatalysts in cross-coupling reactions, although they can incorporate catalytically active nickel directly into the reaction. In this work, we focus on the preparation and the catalytic application of low-coordinate Ni(0) complexes supported by bulky monophosphine ligands in C-S cross-coupling reactions. We have prepared two families of Ni(0) complexes, bis-phosphine aducts of the type [Ni(PRAr')] (Ar' = -terphenyl group) and monophosphine derivatives of the type [Ni(PRAr')(DVDS)] (DVDS = divinyltetramethyldisiloxane).

View Article and Find Full Text PDF

Sulfone motifs play important roles in bioactive compounds and functional materials. The development of efficient methodologies for constructing sulfonyl-containing compounds has thus attracted considerable attention. Here, we introduce a protocol for the preparation of alkyl aryl sulfones under mild conditions.

View Article and Find Full Text PDF

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Benzothiazolium salts as versatile primary alcohol derivatives in Ni-catalyzed cross-electrophile arylation/vinylation.

Org Biomol Chem

January 2025

Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.

Herein, we report a Ni-catalyzed cross-electrophile coupling of aryl/vinyl halides with benzothiazolium salts derived from alcohols. Our findings demonstrate that primary alkyl benzothiazolium salts serve as effective C(sp)-O substrates, facilitating coupling with aryl and vinyl halides. This method not only enables the formal functionalization of primary alcohols but also provides experimental support for previously established sequential alcohol halogenation and Ni-catalyzed reductive coupling platforms.

View Article and Find Full Text PDF

Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!