Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the biomedical literature, entities are often distributed within multiple sentences and exhibit complex interactions. As the volume of literature has increased dramatically, it has become impractical to manually extract and maintain biomedical knowledge, which would entail enormous costs. Fortunately, document-level relation extraction can capture associations between entities from complex text, helping researchers efficiently mine structured knowledge from the vast medical literature. However, how to effectively synthesize rich global information from context and accurately capture local dependencies between entities is still a great challenge. In this paper, we propose a Local to Global Graphical Reasoning framework (LoGo-GR) based on a novel Biased Graph Attention mechanism (B-GAT). It learns global context feature and information of local relation path dependencies from mention-level interaction graph and entity-level path graph respectively, and collaborates with global and local reasoning to capture complex interactions between entities from document-level text. In particular, B-GAT integrates structural dependencies into the standard graph attention mechanism (GAT) as attention biases to adaptively guide information aggregation in graphical reasoning. We evaluate our method on three publicly biomedical document-level datasets: Drug-Mutation Interaction (DV), Chemical-induced Disease (CDR), and Gene-Disease Association (GDA). LoGo-GR has advanced and stable performance compared to other state-of-the-art methods (it achieves state-of-the-art performance with 96.14%-97.39% F1 on DV dataset, advanced performance with 68.89% F1 and 84.22% F1 on CDR and GDA datasets, respectively). In addition, LoGo-GR also shows advanced performance on general-domain document-level relation extraction dataset, DocRED, which proves that it is an effective and robust document-level relation extraction framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3358169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!