Live-Cell Fluorescence Imaging for Virus-Host Interactions.

Methods Mol Biol

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.

Published: January 2024

AI Article Synopsis

  • Recent advances in microscopy technology have enhanced our ability to study how hosts interact with pathogens, particularly through live-cell imaging.
  • Enhanced microscope hardware and engineered biosensors enable better visualization of live cells, allowing for real-time observation of signaling events and protein positioning.
  • The text outlines a specific protocol for conducting long-term live-cell fluorescence imaging in virus-infected cell lines.

Article Abstract

Recent technological advances in microscopy have facilitated novel approaches to investigate host-pathogen interactions. In particular, improvements in both microscope hardware and engineered biosensors have helped to overcome barriers to live-cell imaging with fluorescence microscopy. Live fluorescent microscopy allows for the detection of discrete signaling events and protein localization, improving our ability to assess the effects of pharmacologic agents, microbes, or infection with high temporal resolution. Here we describe a protocol for long-term live-cell fluorescence imaging of virus infected cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3617-6_3DOI Listing

Publication Analysis

Top Keywords

live-cell fluorescence
8
fluorescence imaging
8
imaging virus-host
4
virus-host interactions
4
interactions technological
4
technological advances
4
advances microscopy
4
microscopy facilitated
4
facilitated novel
4
novel approaches
4

Similar Publications

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.

View Article and Find Full Text PDF

Lately, important advancements in visualizing RNAs in fixed and live cells have been achieved. While mRNA imaging techniques are well-established, the development of effective methods for studying non-coding RNAs (ncRNAs) in living cells are still challenging but necessary, as they show a variety of functions and intracellular localizations, including participation in highly dynamic processes like phase-transition, which is still poorly studied in vivo. Addressing this issue, we tagged two exemplary ncRNAs with the fluorescent RNA (fRNA) Pepper.

View Article and Find Full Text PDF

Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.

View Article and Find Full Text PDF

Dynamic Monitoring of Organelle Interactions in Living Cells via Two-Color Digitally Enhanced Stimulated Emission Depletion Super-resolution Microscopy.

J Phys Chem Lett

January 2025

College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen 518060, P. R. China.

One of the most significant advances in stimulated emission depletion (STED) super-resolution microscopy is its capacity for dynamic super-resolution imaging of living cells, including the long-term tracking of interactions between various cells or organelles. Consequently, the multicolor STED plays a pivotal role in biological research. Despite the emergence of numerous fluorescent probes characterized by low toxicity, high stability, high brightness, and exceptional specificity, enabling dynamic imaging of living cells with multicolor STED, practical implementation of multicolor STED for live-cell imaging is influenced by several factors.

View Article and Find Full Text PDF

Quantitative Study on the Charge-Dependent Uptake of Ultrasmall Fluorescent Gold Nanoclusters in 3D Spheroids of Cancer Cells.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.

Gold nanoclusters (AuNCs) have garnered significant attention in biomedical applications, particularly in biosensing, cancer therapy, and imaging, due to their unique optical property, good biocompatibility, and distinct bioactivity. Understanding the cellular uptake behavior of AuNCs is critical to improve the efficacy of their applications, whose mechanism has not been adequately validated. In this work, we synthesized AuNCs with varying surface modifications to quantify the exact law of surface charge on the cellular uptake of AuNCs in a multidimensional manner by using 3D multicellular tumor spheroids of both HeLa cells and MCF-7 cells as the model system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!