Flexible strain sensors have garnered attraction in the human healthcare domain. However, caveats like crosstalk and noise associated with the output signal of such a sensor often limit the accuracy. Hence, developing a strain sensor frugal engineering is critical, thereby warranting its mass utility. A stencil printable graphene/liquid elastomeric crosstalk-free strain sensor for unobtrusive respiratory monitoring is reported herein. Printing supports the frugality of the process and avoids complex fabrication. The sensor was mounted on a wearable mask, and the sensor console was fabricated. The console demonstrated the capability to detect the respiratory profile at room and low temperature (-26 °C) with an SNR of -12.85 dB. Developed sensors could nullify the impact of temperature and humidity and generate respiratory signals due to strain induced by breathing. A model experiment was conducted to support the fidelity of the strain mechanism. The console demonstrated excellent stability (over 500 cycles) with a sensitivity of -196.56 (0-0.17% strain) and 117.49 (0.17-0.34% strain). The console could accurately determine conditions like eupnea, tachypnoea, ., and transmit the data wirelessly Bluetooth. These findings solve major caveats in flexible sensor development by focusing on selectivity, sensitivity, and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr04774aDOI Listing

Publication Analysis

Top Keywords

unobtrusive respiratory
8
respiratory monitoring
8
strain sensor
8
console demonstrated
8
strain
7
sensor
6
crosstalk-free graphene-liquid
4
graphene-liquid elastomer
4
elastomer based
4
based printed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!