Sodium nitrite is a commonly used preservative and color protectant in the food industry. Conventional analytical methods are highly susceptible to food matrix interference, time-consuming and costly. In this study, the ion cross-linking method was employed to prepare alginate hydrogel substrates, and phenosafranin was chosen as a single-molecule probe to analyze sodium nitrite. Our investigation centered on elucidating the effects of alginate and cross-linking ion concentrations on Raman signal characteristics. The optimal Raman response was observed in the precursor solution with 1% sodium alginate and 0.1 mol L cross-linking ions. The relative standard deviations (RSDs) of the feature peaks from the three substrate batches ranged from 1.22% to 16.30%, attesting the robustness and consistency of the substrates. The signal reduction of the substrates after a four-week storage period remained below 10%, indicating that the substrates had good reproducibility and stability. The limits of detection (LODs) for sodium nitrite in extracts from cured meat, luncheon meat, and sliced ham were determined to range from 3.75 mg kg to 8.11 mg kg, with low interference from the food matrix. The support vector machine algorithm was utilized to train and predict the data, which proved to be more accurate (98.6%-99.8% recovery) than the traditional linear regression model (81.9%-112.7% recovery) in predicting the spiked samples. The application of hydrogel-based surface-enhanced Raman spectroscopy (SERS) substrates for nitrite detection in food, combined with machine learning for regression prediction in data processing, collectively augmented the potential of SERS technology in the field of food analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3an01771k | DOI Listing |
Curr Microbiol
January 2025
Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea.
Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.
View Article and Find Full Text PDFAnal Biochem
January 2025
Department of Studies and Research in Biochemistry, Tumkur University, Tumkur 572103, Karnataka, India. Electronic address:
Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.
View Article and Find Full Text PDFClin Toxicol (Phila)
January 2025
Minnesota Regional Poison Center, Minneapolis, MN, USA.
Introduction: Sodium nitrite is a potent oxidizer, which may precipitate rapidly lethal methemoglobinemia. Prompt diagnosis and treatment may salvage otherwise fatal cases. It is unclear if emergency departments are prepared for increasing cases.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:
This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.
View Article and Find Full Text PDFAdv Biomed Res
October 2024
Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Diabetes mellitus (DM) is one of the most common metabolic diseases in the world. Studies have shown that nitric oxide (NO) promotes re-epithelialization and stimulates angiogenesis and neovascularization. This study aimed to investigate the effect of exogenous NO on diabetic wound healing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!