We report the spontaneous formation of a characteristic periodic pattern through the phase separation of a tripolymer solution comprising polyethylene-glycol (PEG)/dextran (DEX)/gelatin. When this tripolymer solution is introduced into a glass capillary with a PEG-coated inner surface, we observe the time-dependent growth of microphase separation. Remarkably, a self-organized, periodic alignment of DEX- and gelatin-rich microdroplets ensues, surrounded by a PEG-rich phase. This pattern demonstrates considerable stability, enduring for at least 8 h. The fundamental characteristics of the experimentally observed periodic alignment are successfully replicated via numerical simulations using a Cahn-Hilliard model underpinned by a set of simple, theoretically derived equations. We propose that this type of kinetically stabilized periodic patterning can be produced across a broad range of phase-separation systems by selecting appropriate boundary conditions such as at the surface within a narrow channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883045PMC
http://dx.doi.org/10.1021/acsmacrolett.3c00689DOI Listing

Publication Analysis

Top Keywords

periodic alignment
12
tripolymer solution
12
microphase separation
8
separation tripolymer
8
periodic
5
alignment binary
4
binary droplets
4
droplets microphase
4
solution tubular
4
tubular confinement
4

Similar Publications

Carefully timed light exposure is a promising countermeasure to overcome the negative sleep and circadian implications of shift work. However, many lighting interventions are static and applied at the group level (e.g.

View Article and Find Full Text PDF

Introduction: Endothelin A (ETA) receptor activation is a driver of proteinuria, kidney inflammation, and fibrosis in IgA nephropathy (IgAN). Atrasentan, a selective ETA receptor antagonist, has potential to reduce proteinuria and preserve kidney function in IgAN. ALIGN (NCT04573478) is a phase 3, randomized, double-blind, placebo-controlled clinical trial of atrasentan in patients with IgAN at high risk of kidney function loss.

View Article and Find Full Text PDF

Real-world implementation of brain-computer interfaces (BCI) for continuous control of devices should ideally rely on fully asynchronous decoding approaches. That is, the decoding algorithm should continuously update its output by estimating the user's intended actions from real-time neural activity, without the need for any temporal alignment to an external cue. This kind of open-ended temporal flexibility is necessary to achieve naturalistic and intuitive control, but presents a challenge: how do we know when it is appropriate to decode anything at all? Activity in motor cortex is dynamic and modulates with many different types of actions (proximal arm control, hand control, speech, etc.

View Article and Find Full Text PDF

Pattern architected soft magnetic actuation.

Soft Matter

January 2025

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.

Bioinspired shape-morphing soft magnetic actuators have potential applications in medicine, robotics, and engineering due to their soft body, untethered control, and infinite degrees of freedom. The shape programming of the soft magnetic actuators (consisting of soft ferromagnetic CI particles in a soft matrix) is an involved task, as it requires a moulding process severely limiting the capability to program complex shapes. The current study explores a shape programming technique that architects the particle pattern configuration in the actuator, mimicking the pattern found in the mould-programmed actuator, thereby eliminating the need for a mould and providing a greater capability of programming complex shapes.

View Article and Find Full Text PDF

Background: Female sex workers (FSWs) have the highest HIV prevalence in Uganda. Pre-exposure prophylaxis (PrEP) has been recommended as a key component of the HIV combination prevention strategy. Although patient initiation of PrEP has improved, continuation rates remain low.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!