Background: Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome.

Results: The present study investigated the influence of sciadonic acid (SA) on Cy-induced immunosuppression in mice. The results showed that SA gavage significantly alleviated Cy-induced immune damage by improving the immune system organ index, immune response and oxidative stress. Moreover, SA restored intestinal morphology, improved villus integrity and activated the nuclear factor κB signaling pathway, stimulated cytokine production, and reduced serum lipopolysaccharide (LPS) levels. Furthermore, gut microbiota analysis indicated that SA increased t beneficial bacteria (Alistipes, Lachnospiraceae_NK4A136_group, Rikenella and Odoribacter) and decreased pathogenic bacteria (norank-f-Oscillospiraceae, Ruminococcus and Desulfovibrio) to maintain intestinal homeostasis.

Conclusion: The present study provided new insights into the SA regulation of intestinal flora to enhance immune responses. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13271DOI Listing

Publication Analysis

Top Keywords

sciadonic acid
8
immune response
8
gut microbiota
8
intestinal mucosal
8
intestinal flora
8
intestinal
7
immune
6
acid ameliorates
4
ameliorates cyclophosphamide-induced
4
cyclophosphamide-induced immunosuppression
4

Similar Publications

Torreya grandis (TG) nuts are highly valued for their rich content of bioactive compounds including lipids, proteins, carbohydrates, phenolic compounds, vitamins, and minerals, credited with numerous health benefits. In addition to their use in various culinary applications, such as baked goods and snacks, TG nuts are valuable source of high-quality oil rich in ω-3 and ω-6 unsaturated fatty acids, which has been shown to have anti-obesity, neuroprotective, and anti-diabetes effects. Besides, the byproducts from TG nuts processing, like the fruit aril and oil cake, are valuable sources of essential oils and proteins, respectively, with notable antioxidant, antimicrobial, and antifungal properties.

View Article and Find Full Text PDF

Non-traditional seafood, such as spoon worms (Urechis unicinctus) and peanut worms (Sipunculus nudus), serves as both delicacies and potential solutions to the global food insecurity crisis. Despite being consumed primarily in parts of China, Korea, and Japan, the nutritional values especially the complex fatty acid compositions of these marine worms are difficult to characterize. To overcome this obstacle, we employed covalent adduct chemical ionization (CACI) tandem mass spectrometry for the de novo identification of their unusual polyunsaturated fatty acids (PUFA).

View Article and Find Full Text PDF

Torreya grandis (T. grandis) oil has been reported to alleviate symptoms of slow transit constipation (STC). However, the impact of sciadonic acid (SA), a distinctive fatty acid found in T.

View Article and Find Full Text PDF

High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear.

View Article and Find Full Text PDF

Background: Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!